9 research outputs found

    Characterization of histopathology and gene-expression profiles of synovitis in early rheumatoid arthritis using targeted biopsy specimens

    Get PDF
    The disease category of early rheumatoid arthritis (RA) has been limited with respect to clinical criteria. Pathological manifestations of synovitis in patients whose disease is clinically classified as early RA seem to be heterogeneous, with regular variations. To clarify the relation between the molecular and histopathological features of the synovitis, we analyzed gene-expression profiles in the synovial lining tissues to correlate them with histopathological features. Synovial tissues were obtained from knee joints of 12 patients with early RA by targeted biopsy under arthroscopy. Surgical specimens of long-standing RA (from four patients) were examined as positive controls. Each histopathological parameter characteristic of rheumatoid synovitis in synovial tissues was scored under light microscopy. Total RNAs from synovial lining tissues were obtained from the specimens selected by laser capture microdissection and the mRNAs were amplified by bacteriophage T7 RNA polymerase. Their cDNAs were analyzed in a cDNA microarray with 23,040 cDNAs, and the levels of gene expression in multilayered lining tissues, compared with those of normal-like lining tissues in specimens from the same person, were determined to estimate gene-expression profiles characteristic of the synovial proliferative lesions in each case. Based on cluster analysis of all cases, gene-expression profiles in the lesions in early RA fell into two groups. The groups had different expression levels of genes critical for proliferative inflammation, including those encoding cytokines, adhesion molecules, and extracellular matrices. One group resembled synovitis in long-standing RA and had high scores for some histopathological features – involving accumulations of lymphocytes and plasma cells – but not for other features. Possible differences in the histopathogenesis and prognosis of synovitis between the two groups are discussed in relation to the candidate genes and histopathology

    Extension of the operational regime of the LHD towards a deuterium experiment

    No full text

    Extension of the operational regime of the LHD towards a deuterium experiment

    No full text
    As the finalization of a hydrogen experiment towards the deuterium phase, the exploration of the best performance of hydrogen plasma was intensively performed in the large helical device. High ion and electron temperatures, T-i and T-e, of more than 6 keV were simultaneously achieved by superimposing high-power electron cyclotron resonance heating onneutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value . The high regime around 4% was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with a wide range of edge plasma parameters. The existence of a no impurity accumulation regime, where the high performance plasma is maintained with high power heating > 10 MW, was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region.1118sciescopu

    Extension of the operational regime of the LHD towards a deuterium experiment

    No full text

    Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas

    No full text
    The stability with respect to a peelingballooning mode (PBM) was investigated numerically with extended MHD simulation codes in JET, JT-60U and future JT-60SA plasmas. The MINERVA-DI code was used to analyze the linear stability, including the effects of rotation and ion diamagnetic drift (w∗i), in JET-ILW and JT-60SA plasmas, and the JOREK code was used to simulate nonlinear dynamics with rotation, viscosity and resistivity in JT-60U plasmas. It was validated quantitatively that the ELM trigger condition in JET-ILW plasmas can be reasonably explained by taking into account both the rotation and w∗i effects in the numerical analysis. When deuterium poloidal rotation is evaluated based on neoclassical theory, an increase in the effective charge of plasma destabilizes the PBM because of an acceleration of rotation and a decrease in w∗i. The difference in the amount of ELM energy loss in JT-60U plasmas rotating in opposite directions was reproduced qualitatively with JOREK. By comparing the ELM affected areas with linear eigenfunctions, it was confirmed that the difference in the linear stability property, due not to the rotation direction but to the plasma density profile, is thought to be responsible for changing the ELM energy loss just after the ELM crash. A predictive study to determine the pedestal profiles in JT-60SA was performed by updating the EPED1 model to include the rotation and w∗i effects in the PBM stability analysis. It was shown that the plasma rotation predicted with the neoclassical toroidal viscosity degrades the pedestal performance by about 10% by destabilizing the PBM, but the pressure pedestal height will be high enough to achieve the target parameters required for the ITER-like shape inductive scenario in JT-60SA
    corecore