27 research outputs found

    AtNFXL1, an Arabidopsis homologue of the human transcription factor NF-X1, functions as a negative regulator of the trichothecene phytotoxin-induced defense response

    Get PDF
    金沢大学学際科学実験センター遺伝子研究施設Trichothecenes are a closely related family of phytotoxins that are produced by phytopathogenic fungi. In Arabidopsis, expression of AtNFXL1, a homologue of the putative human transcription repressor NF-X1, was significantly induced by application of type A trichothecenes, such as T-2 toxin. An atnfxl1 mutant growing on medium lacking trichothecenes showed no phenotype, whereas a hypersensitivity phenotype was observed in T-2 toxin-treated atnfxl1 mutant plants. Microarray analysis indicated that several defense-related genes (i.e. WRKYs, NBS-LRRs, EDS5, ICS1, etc.) were upregulated in T-2 toxin-treated atnfxl1 mutants compared with wild-type plants. In addition, enhanced salicylic acid (SA) accumulation was observed in T-2 toxin-treated atnfxl1 mutants, which suggests that AtNFXL1 functions as a negative regulator of these defense-related genes via an SA-dependent signaling pathway. We also found that expression of AtNFXL1 was induced by SA and flg22 treatment. Moreover, the atnfxl1 mutant was less susceptible to a compatible phytopathogen, Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000). Taken together, these results indicate that AtNFXL1 plays an important role in the trichothecene response, as well as the general defense response in Arabidopsis. © 2007 The Authors

    Fusarium phytotoxin trichothecenes have an elicitor-like activity in Arabidopsis thaliana, but the activity differed significantly among their molecular species

    Get PDF
    金沢大学学際科学実験センター遺伝子研究施設Phytopathogenic fungi such as Fusarium spp. synthesize trichothecene family phytotoxins. Although the type B trichothecene, deoxynivalenol (DON), is thought to be a virulence factor allowing infection of plants by their trichothecene-producing Fusarium spp., little is known about effects of trichothecenes on the defense response in host plants. Therefore, in this article, we investigated these effects of various trichothecenes in Fusarium-susceptible Arabidopsis thaliana. Necrotic lesions were observed in Arabidopsis leaves infiltrated by 1 μM type A trichothecenes such as T-2 toxin. Trichothecene-induced lesions exhibited dead cells, callose deposition, generation of hydrogen peroxide, and accumulation of salicylic acids. Moreover, infiltration by trichothecenes caused rapid and prolonged activation of two mitogen-activated protein kinases and induced expression of both PR-1 and PDF1.2 genes. Thus, type A trichothecenes trigger the cell death by activation of an elicitor-like signaling pathway in Arabidopsis. Although DON did not have such an activity even at 10 μM, translational inhibition by DON was observed at concentrations above 5 μM. These results suggested that DON is capable of inhibiting translation in Arabidopsis cells without induction of the elicitor-like signaling pathway. © 2006 The American Phytopathological Society.

    Priming of Immune System in Tomato by Treatment with Low Concentration of L-Methionine

    No full text
    Various metabolites, including phytohormones, phytoalexins, and amino acids, take part in the plant immune system. Herein, we analyzed the effects of L-methionine (Met), a sulfur-containing amino acid, on the plant immune system in tomato. Treatment with low concentrations of Met enhanced the resistance of tomato to a broad range of diseases caused by the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) and the necrotrophic fungal pathogen Botrytis cinerea (Bc), although it did not induce the production of any antimicrobial substances against these pathogens in tomato leaf tissues. Analyses of gene expression and phytohormone accumulation indicated that Met treatment alone did not activate the defense signals mediated by salicylic acid, jasmonic acid, and ethylene. However, the salicylic acid-responsive defense gene and the jasmonic acid-responsive gene were induced more rapidly in Met-treated plants after infection with Pst and Bc, respectively. These findings suggest that low concentrations of Met have a priming effect on the phytohormone-mediated immune system in tomato

    Acquired resistance to the rice blast in transgenic rice accumulating the antimicrobial peptide thanatin

    Get PDF
    Thanatin is an antimicrobial peptide with a strong and wide-ranging antimicrobial spectrum, including certain species of fungi and Gram-negative and -positive bacteria. To evaluate the application of thanatin to the generation of disease-resistant plants, we introduced a synthetic thanatin gene into rice. Several transformants that expressed the introduced gene showed significant level of antimicrobial activity. The substances showing antimicrobial activity were partially purified from these transformants and their properties were determined. The molecule with characteristics similar to those of native thanatin on the elution pattern in HPLC analysis had an identical molecular mass to that of native molecule. It should also be noted that the transformant acquired a sufficient level of resistance to the rice blast fungus, Magnaporthe oryzae, presumably due to the repressive activity of thanatin to its initial stage of infection. This result demonstrates that thanatin has antifungal activity for M. oryzae and that the introduction of the thanatin gene into rice is effective in generating a plant resistant to rice blast disease

    Strigolactones Modulate Salicylic Acid-Mediated Disease Resistance in Arabidopsis thaliana

    No full text
    Strigolactones are low-molecular-weight phytohormones that play several roles in plants, such as regulation of shoot branching and interactions with arbuscular mycorrhizal fungi and parasitic weeds. Recently, strigolactones have been shown to be involved in plant responses to abiotic and biotic stress conditions. Herein, we analyzed the effects of strigolactones on systemic acquired resistance induced through salicylic acid-mediated signaling. We observed that the systemic acquired resistance inducer enhanced disease resistance in strigolactone-signaling and biosynthesis-deficient mutants. However, the amount of endogenous salicylic acid and the expression levels of salicylic acid-responsive genes were lower in strigolactone signaling-deficient max2 mutants than in wildtype plants. In both the wildtype and strigolactone biosynthesis-deficient mutants, the strigolactone analog GR24 enhanced disease resistance, whereas treatment with a strigolactone biosynthesis inhibitor suppressed disease resistance in the wildtype. Before inoculation of wildtype plants with pathogenic bacteria, treatment with GR24 did not induce defense-related genes; however, salicylic acid-responsive defense genes were rapidly induced after pathogenic infection. These findings suggest that strigolactones have a priming effect on Arabidopsis thaliana by inducing salicylic acid-mediated disease resistance
    corecore