52 research outputs found

    Vesnarinone, a differentiation inducing drug, directly activates p21waf1 gene promoter via Sp1 sites in a human salivary gland cancer cell line

    Get PDF
    We previously demonstrated that a differentiation inducing drug, vesnarinone induced the growth arrest and p21waf1 gene expression in a human salivary gland cancer cell line, TYS. In the present study, we investigated the mechanism of the induction of p21waf1 gene by vesnarinone in TYS cells. We constructed several reporter plasmids containing the p21waf1 promoter, and attempted to identify vesnarinone-responsive elements in the p21waf1 promoter. By the luciferase reporter assay, we identified the minimal vesnarinone-responsive element in the p21waf1 promoter at −124 to −61 relative to the transcription start site. Moreover, we demonstrated by electrophoretic mobility shift assay that Sp1 and Sp3 transcription factors bound to the vesnarinone-responsive element. Furthermore, we found that vesnarinone induced the histone hyperacetylation in TYS cells. These results suggest that vesnarinone directly activates p21waf1 promoter via the activation of Sp1 and Sp3 transcription factors and the histone hyperacetylation in TYS cells

    Efficacy of c-Met inhibitor for advanced prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aberrant expression of HGF/SF and its receptor, c-Met, often correlates with advanced prostate cancer. Our previous study showed that expression of c-Met in prostate cancer cells was increased after attenuation of androgen receptor (AR) signalling. This suggested that current androgen ablation therapy for prostate cancer activates c-Met expression and may contribute to development of more aggressive, castration resistant prostate cancer (CRPC). Therefore, we directly assessed the efficacy of c-Met inhibition during androgen ablation on the growth and progression of prostate cancer.</p> <p>Methods</p> <p>We tested two c-Met small molecule inhibitors, PHA-665752 and PF-2341066, for anti-proliferative activity by MTS assay and cell proliferation assay on human prostate cancer cell lines with different levels of androgen sensitivity. We also used renal subcapsular and castrated orthotopic xenograft mouse models to assess the effect of the inhibitors on prostate tumor formation and progression.</p> <p>Results</p> <p>We demonstrated a dose-dependent inhibitory effect of PHA-665752 and PF-2341066 on the proliferation of human prostate cancer cells and the phosphorylation of c-Met. The effect on cell proliferation was stronger in androgen insensitive cells. The c-Met inhibitor, PF-2341066, significantly reduced growth of prostate tumor cells in the renal subcapsular mouse model and the castrated orthotopic mouse model. The effect on cell proliferation was greater following castration.</p> <p>Conclusions</p> <p>The c-Met inhibitors demonstrated anti-proliferative efficacy when combined with androgen ablation therapy for advanced prostate cancer.</p

    KAI1 suppresses HIF-1α and VEGF expression by blocking CDCP1-enhanced Src activation in prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>KAI1 was initially identified as a metastasis-suppressor gene in prostate cancer. It is a member of the tetraspan transmembrane superfamily (TM4SF) of membrane glycoproteins. As part of a tetraspanin-enriched microdomain (TEM), KAI1 inhibits tumor metastasis by negative regulation of Src. However, the underlying regulatory mechanism has not yet been fully elucidated. CUB-domain-containing protein 1 (CDCP1), which was previously known as tetraspanin-interacting protein in TEM, promoted metastasis via enhancement of Src activity. To better understand how KAI1 is involved in the negative regulation of Src, we here examined the function of KAI1 in CDCP1-mediated Src kinase activation and the consequences of this process, focusing on HIF-1 α and VEGF expression.</p> <p>Methods</p> <p>We used the human prostate cancer cell line PC3 which was devoid of KAI1 expression. Vector-transfected cells (PC3-GFP clone #8) and KAI1-expressing PC3 clones (PC3-KAI1 clone #5 and #6) were picked after stable transfection with KAI1 cDNA and selection in 800 <it>μ</it>g/ml G418. Protein levels were assessed by immunoblotting and VEGF reporter gene activity was measured by assaying luciferase activitiy. We followed tumor growth <it>in vivo </it>and immunohistochemistry was performed for detection of HIF-1, CDCP1, and VHL protein level.</p> <p>Results</p> <p>We demonstrated that Hypoxia-inducible factor 1α (HIF-1α) and VEGF expression were significantly inhibited by restoration of KAI1 in PC3 cells. In response to KAI1 expression, CDCP1-enhanced Src activation was down-regulated and the level of von Hippel-Lindau (VHL) protein was significantly increased. In an <it>in vivo </it>xenograft model, KAI1 inhibited the expression of CDCP1 and HIF-1α.</p> <p>Conclusions</p> <p>These novel observations may indicate that KAI1 exerts profound metastasis-suppressor activity in the tumor malignancy process via inhibition of CDCP1-mediated Src activation, followed by VHL-induced HIF-1α degradation and, ultimately, decreased VEGF expression.</p

    The Antidiabetic Drug Ciglitazone Induces High Grade Bladder Cancer Cells Apoptosis through the Up-Regulation of TRAIL

    Get PDF
    International audienceBACKGROUND: Ciglitazone belongs to the thiazolidinediones class of antidiabetic drug family and is a high-affinity ligand for the Peroxisome Proliferator-Activated Receptor γ (PPARγ). Apart from its antidiabetic activity, this molecule shows antineoplastic effectiveness in numerous cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Using RT4 (derived from a well differentiated grade I papillary tumor) and T24 (derived from an undifferentiated grade III carcinoma) bladder cancer cells, we investigated the potential of ciglitazone to induce apoptotic cell death and characterized the molecular mechanisms involved. In RT4 cells, the drug induced G2/M cell cycle arrest characterized by an overexpression of p53, p21(waf1/CIP1) and p27(Kip1) in concomitance with a decrease of cyclin B1. On the contrary, in T24 cells, it triggered apoptosis via extrinsic and intrinsic pathways. Cell cycle arrest and induction of apoptosis occurred at high concentrations through PPARγ activation-independent pathways. We show that in vivo treatment of nude mice by ciglitazone inhibits high grade bladder cancer xenograft development. We identified a novel mechanism by which ciglitazone kills cancer cells. Ciglitazone up-regulated soluble and membrane-bound TRAIL and let TRAIL-resistant T24 cells to respond to TRAIL through caspase activation, death receptor signalling pathway and Bid cleavage. We provided evidence that TRAIL-induced apoptosis is partially driven by ciglitazone-mediated down-regulation of c-FLIP and survivin protein levels through a proteasome-dependent degradation mechanism. CONCLUSIONS/SIGNIFICANCE: Therefore, ciglitazone could be clinically relevant as chemopreventive or therapeutic agent for the treatment of TRAIL-refractory high grade urothelial cancers

    Low-dose retinoic acid enhances in vitro invasiveness of human oral squamous-cell-carcinoma cell lines

    Get PDF
    Retinoids inhibit the proliferation of several types of tumour cells, and are used for patients with several malignant tumours. In this study, we examined the effect of retinoic acids (RAs) on the invasive potentials of the oral squamous cell carcinoma (SCC) cells, BHY and HNt. BHY cells expressed all of retinoid nuclear receptors (RARα, β, γ, and RXRα) and cytoplasmic retinoic acid binding proteins (CRABP1 and CRABP2). HNt cells lacked the expression of RARβ, but expressed other nuclear receptors and CRABPs. All-trans retinoic acid (ATRA) and 13-cis retinoic acid (13-cisRA) (10−6and 10−7M) inhibited the growth of the cells, but low-dose ATRA and 13-cisRA (10−8M) marginally affected the growth of the cells. Surprisingly, low-dose RAs enhanced the activity of tissue-type plasminogen activator (tPA), and activated pro-matrix metalloproteinases (proMMP2 and proMMP9). Activation of proMMP2 and proMMP9 was inhibited by aprotinin, a serine-proteinase, tPA inhibitor. Furthermore, low-dose RAs enhanced the in vitro invasiveness of BHY cells. These results indicate that low-dose RAs enhances the in vitro invasiveness of oral SCC cells via an activation of proMMP2 and proMMP9 probably mediated by the induction of tPA. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Specific Thiazolidinediones Inhibit Ovarian Cancer Cell Line Proliferation and Cause Cell Cycle Arrest in a PPARγ Independent Manner

    Get PDF
    Peroxisome Proliferator Activated Receptor gamma (PPARγ) agonists, such as the thiazolinediones (TZDs), have been studied for their potential use as cancer therapeutic agents. We investigated the effect of four TZDs--Rosiglitazone (Rosi), Ciglitazone (CGZ), Troglitazone (TGZ), and Pioglitazone (Pio)--on ovarian cancer cell proliferation, PPARγ expression and PPAR luciferase reporter activity. We explored whether TZDs act in a PPARγ dependent or independent manner by utilizing molecular approaches to inhibit or overexpress PPARγ activity.Treatment with CGZ or TGZ for 24 hours decreased proliferation in three ovarian cancer cell lines, Ovcar3, CaOv3, and Skov3, whereas Rosi and Pio had no effect. This decrease in Ovcar3 cell proliferation was due to a higher fraction of cells in the G(0)/G(1) stage of the cell cycle. CGZ and TGZ treatment increased apoptosis after 4 hours of treatment but not after 8 or 12 hours. Treatment with TGZ or CGZ increased PPARγ mRNA expression in Ovcar3 cells; however, protein levels were unchanged. Surprisingly, luciferase promoter assays revealed that none of the TZDs increased PPARγ activity. Overexpression of wild type PPARγ increased reporter activity. This was further augmented by TGZ, Rosi, and Pio indicating that these cells have the endogenous capacity to mediate PPARγ transactivation. To determine whether PPARγ mediates the TZD-induced decrease in proliferation, cells were treated with CGZ or TGZ in the absence or presence of a dominant negative (DN) or wild type overexpression PPARγ construct. Neither vector changed the TZD-mediated cell proliferation suggesting this effect of TZDs on ovarian cancer cells may be PPARγ independent.CGZ and TGZ cause a decrease in ovarian cancer cell proliferation that is PPARγ independent. This concept is supported by the finding that a DN or overexpression of the wild type PPARγ did not affect the changes in cell proliferation and cell cycle

    The investigation of Mitogen-Activated Protein kinase Phosphatase-1 as a potential pharmacological target in non-small cell lung carcinomas, assisted by non-invasive molecular imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Invasiveness and metastasis are the most common characteristics of non small cell lung cancer (NSCLC) and causes of tumour-related morbidity and mortality. Mitogen-activated protein kinases (MAPKs) signalling pathways have been shown to play critical roles in tumorigenesis. However, the precise pathological role(s) of mitogen-activated protein kinase phosphatase-1 (MKP-1) in different cancers has been controversial such that the up-regulation of MKP-1 in different cancers does not always correlate to a better prognosis. In this study, we showed that the induction of MKP-1 lead to a significant retardation of proliferation and metastasis in NSCLC cells. We also established that rosiglitazone (a PPARγ agonist) elevated MKP-1 expression level in NSCLC cells and inhibited tumour metastasis.</p> <p/> <p>Methods</p> <p>Both wildtype and dominant negative forms of MKP-1 were constitutively expressed in NSCLC cell line H441GL. The migration and invasion abilities of these cells were examined in vitro. MKP-1 modulating agents such as rosiglitazone and triptolide were used to demonstrate MKP-1's role in tumorigenesis. Bioluminescent imaging was utilized to study tumorigenesis of MKP-1 over-expressing H441GL cells and anti-metastatic effect of rosiglitazone.</p> <p>Results</p> <p>Over-expression of MKP-1 reduced NSCLC cell proliferation rate as well as cell invasive and migratory abilities, evident by the reduced expression levels of MMP-2 and CXCR4. Mice inoculated with MKP-1 over-expressing H441 cells did not develop NSCLC while their control wildtype H441 inoculated littermates developed NSCLC and bone metastasis. Pharmacologically, rosiglitazone, a peroxisome proliferator activated receptor-γ (PPARγ) agonist appeared to induce MKP-1 expression while reduce MMP-2 and CXCR4 expression. H441GL-inoculated mice receiving daily oral rosiglitazone treatment demonstrated a significant inhibition of bone metastasis when compared to mice receiving sham treatment. We found that rosiglitazone treatment impeded the ability of cell migration and invasion <it>in vitro</it>. Cells pre-treated with triptolide (a MKP-1 inhibitor), reversed rosiglitazone-mediated cell invasion and migration.</p> <p>Conclusion</p> <p>The induction of MKP-1 could significantly suppress the proliferative and metastatic abilities of NSCLC both in vitro and in vivo. Therefore, MKP-1 could be considered as a potential therapeutic target in NSCLC therapy and PPARγ agonists could be explored for combined chemotherapy.</p

    Metal-Substituted Microporous Aluminophosphates

    Get PDF
    This chapter aims to present the zeotypes aluminophosphates (AlPOs) as a complementary alternative to zeolites in the isomorphic incorporation of metal ions within all-inorganic microporous frameworks as well as to discuss didactically the catalytic consequences derived from the distinctive features of both frameworks. It does not intend to be a compilation of either all or the most significant publications involving metal-substituted microporous aluminophosphates. Families of AlPOs and zeolites, which include metal ion-substituted variants, are the dominant microporous materials. Both these systems are widely used as catalysts, in particular through aliovalent metal ions substitution. Here, some general description of the synthesis procedures and characterization techniques of the MeAPOs (metal-contained aluminophosphates) is given along with catalytic properties. Next, some illustrative examples of the catalytic possibilities of MeAPOs as catalysts in the transformation of the organic molecules are given. The oxidation of the hardly activated hydrocarbons has probably been the most successful use of AlPOs doped with the divalent transition metal ions Co2+, Mn2+, and Fe2+, whose incorporation in zeolites is disfavoured. The catalytic role of these MeAPOs is rationalized based on the knowledge acquired from a combination of the most advanced characterization techniques. Finally, the importance of the high specificity of the structure-directing agents employed in the preparation of MeAPOs is discussed taking N,N-methyldicyclohexylamine in the synthesis of AFI-structured materials as a driving force. It is shown how such a high specificity could be predicted and how it can open great possibilities in the control of parameters as critical in catalysis as crystal size, inter-and intracrystalline mesoporosity, acidity, redox properties, incorporation of a great variety of heteroatom ions or final environment of the metal site (surrounding it by either P or Al)
    corecore