278 research outputs found

    Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells.

    Get PDF
    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of the matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examined the role of matrix rigidity on the cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using an genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of the already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes

    Haemogenic endocardium contributes to transient definitive haematopoiesis.

    Get PDF
    Haematopoietic cells arise from spatiotemporally restricted domains in the developing embryo. Although studies of non-mammalian animal and in vitro embryonic stem cell models suggest a close relationship among cardiac, endocardial and haematopoietic lineages, it remains unknown whether the mammalian heart tube serves as a haemogenic organ akin to the dorsal aorta. Here we examine the haemogenic activity of the developing endocardium. Mouse heart explants generate myeloid and erythroid colonies in the absence of circulation. Haemogenic activity arises from a subset of endocardial cells in the outflow cushion and atria earlier than in the aorta-gonad-mesonephros region, and is transient and definitive in nature. Interestingly, key cardiac transcription factors, Nkx2-5 and Isl1, are expressed in and required for the haemogenic population of the endocardium. Together, these data suggest that a subset of endocardial/endothelial cells serve as a de novo source for transient definitive haematopoietic progenitors

    The DsbA-L gene is associated with respiratory function of the elderly via its adiponectin multimeric or antioxidant properties

    Get PDF
    Oxidative stress and inflammation play a key role in the age-related decline in the respiratory function. Adipokine in relation to the metabolic and inflammatory systems is attracting growing interest in the field of respiratory dysfunction. The present clinical and experimental studies investigated the role of the disulfide bond-forming oxidoreductase A-like protein (DsbA-L) gene, which has antioxidant and adiponectin multimeric (i.e. activation) properties, on the respiratory function of the elderly. We performed a retrospective longitudinal genotype-phenotype relationship analysis of 318 Japanese relatively elderly participants (mean age ± standard deviation: 67.0 ± 5.8 years) during a health screening program and an in vitro DsbA-L knock-down evaluation using 16HBE14o-cells, a commonly evaluated human airway epithelial cell line. The DsbA-L rs1917760 polymorphism was associated with a reduction in the ratio of forced expiratory volume in 1 second (FEV1)/forced vital capacity (FVC) and %FEV1 and with the elevation of the prevalence of FEV1/FVC < 70%. We also confirmed that the polymorphism was associated with a decreased respiratory function in relation to a decrease in the ratio of high-molecular-weight adiponectin/total adiponectin (as a marker of adiponectin multimerization) and an increase in the oxidized human serum albumin (as an oxidative stress marker). Furthermore, we clarified that DsbA-L knock-down induced oxidative stress and up-regulated the mucus production in human airway epithelial cells. These findings suggest that the DsbA-L gene may play a role in protecting the respiratory function of the elderly, possibly via increased systemic adiponectin functions secreted from adipocytes or through systemic and/or local pulmonary antioxidant properties

    Two Cases of High Tibial Osteotomy in Patients with Rheumatoid Arthritis Treated with Biologic Disease-modifying Anti-rheumatic Drugs

    Get PDF
    High tibial osteotomy (HTO) procedure is generally contraindicated in rheumatoid arthritis (RA) patients because synovial inflammation may exacerbate joint damage post-surgery. The natural course of joint destruction in RA changed dramatically with new treatment strategies and the introduction of biologic disease-modifying anti-rheumatic drugs (bDMARDs). We report the cases of two RA patients who underwent HTO and whose disease activities were well controlled by bDMARDs. Despite their short follow-up periods, they showed acceptable objective and subjective clinical results. We believe that the combination of bDMARDs and HTO can be indicated for selected RA patients before total knee arthroplasty

    The efficacy of incretin therapy in patients with type 2 diabetes undergoing hemodialysis

    Get PDF
    BACKGROUND: Although incretin therapy is clinically available in patients with type 2 diabetes undergoing hemodialysis, no study has yet examined whether incretin therapy is capable of maintaining glycemic control in this group of patients when switched from insulin therapy. In this study, we examined the efficacy of incretin therapy in patients with insulin-treated type 2 diabetes undergoing hemodialysis. METHODS: Ten type 2 diabetic patients undergoing hemodialysis received daily 0.3 mg liraglutide, 50 mg vildagliptin, and 6.25 mg alogliptin switched from insulin therapy on both the day of hemodialysis and the non-hemodialysis day. Blood glucose level was monitored by continuous glucose monitoring. After blood glucose control by insulin, patients were treated with three types of incretin therapy in a randomized crossover manner, with continuous glucose monitoring performed for each treatment. RESULTS: During treatment with incretin therapies, severe hyperglycemia and ketosis were not observed in any patients. Maximum blood glucose and mean blood glucose on the day of hemodialysis were significantly lower after treatment with liraglutide compared with treatment with alogliptin (p < 0.05), but not with vildagliptin. The standard deviation value, a marker of glucose fluctuation, on the non-hemodialysis day was significantly lower after treatment with liraglutide compared with treatment with insulin and alogliptin (p < 0.05), but not with vildagliptin. Furthermore, the duration of hyperglycemia was significantly shorter after treatment with liraglutide on both the hemodialysis and non-hemodialysis days compared with treatment with alogliptin (p < 0.05), but not with vildagliptin. CONCLUSIONS: The data presented here suggest that patients with type 2 diabetes undergoing hemodialysis and insulin therapy could be treated with incretin therapy in some cases

    Time to Bone Union after Hybrid Closed-Wedge High Tibial Osteotomy

    Get PDF
    Medial open- and lateral closed-wedge high tibial osteotomy (hybrid CWHTO) can overcome the limitations of conventional CWHTO and open-wedge HTO (OWHTO) for medial compartmental osteoarthritis (OA) of the knee. Hybrid CWHTO increases stability by using a rigid locking plate and allows early full weight-bearing. However, the literature contains no information about time to bone union after this new procedure. The aim of this study is to evaluate the time to bone union after hybrid CWHTO. We reviewed 44 knees treated with hybrid CWHTO. Patients were able to stand on both legs on the day after surgery and walked with full weight-bearing within 4 weeks of the procedure. The time to achievement of bone union at the osteotomy site was defined as the number of months until bone union was confirmed on radiographic imaging. The mean time to radiographic confirmation of bone union was 4.5±1.5 months after surgery. Eleven knees (25.0%) required 6 months or more. Radiographic analysis and JOA score improved significantly between before and 1 year after surgery (p<0.01). Hybrid CWHTO is a very useful method for treating medial OA, but radiographic bone union requires 4.5 months on average. We must be aware of bone union after hybrid CWHTO

    KUS121, a VCP modulator, has an ameliorating effect on acute and chronic heart failure without calcium loading via maintenance of intracellular ATP levels

    Get PDF
    KUS121は新規の心不全治療薬となる --Ca2+負荷なしに血行動態を改善--. 京都大学プレスリリース. 2023-12-15.[Aims] As heart failure (HF) progresses, ATP levels in myocardial cells decrease, and myocardial contractility also decreases. Inotropic drugs improve myocardial contractility but increase ATP consumption, leading to poor prognosis. Kyoto University Substance 121 (KUS121) is known to selectively inhibit the ATPase activity of valosin-containing protein, maintain cellular ATP levels, and manifest cytoprotective effects in several pathological conditions. The aim of this study is to determine the therapeutic effect of KUS121 on HF models. [Methods and results] Cultured cell, mouse, and canine models of HF were used to examine the therapeutic effects of KUS121. The mechanism of action of KUS121 was also examined. Administration of KUS121 to a transverse aortic constriction (TAC)-induced mouse model of HF rapidly improved the left ventricular ejection fraction and improved the creatine phosphate/ATP ratio. In a canine model of high frequency-paced HF, administration of KUS121 also improved left ventricular contractility and decreased left ventricular end-diastolic pressure without increasing the heart rate. Long-term administration of KUS121 to a TAC-induced mouse model of HF suppressed cardiac hypertrophy and fibrosis. In H9C2 cells, KUS121 reduced ER stress. Finally, in experiments using primary cultured cardiomyocytes, KUS121 improved contractility and diastolic capacity without changing peak Ca²⁺ levels or contraction time. These effects were not accompanied by an increase in cyclic adenosine monophosphate or phosphorylation of phospholamban and ryanodine receptors. [Conclusions] KUS121 ameliorated HF by a mechanism totally different from that of conventional catecholamines. We propose that KUS121 is a promising new option for the treatment of HF

    Inhibition of microRNA-33b in humanized mice ameliorates nonalcoholic steatohepatitis

    Get PDF
    マイクロRNA-33bの阻害は非アルコール性脂肪肝炎を改善する --核酸医薬による治療応用へ--. 京都大学プレスリリース. 2023-06-13.Nonalcoholic steatohepatitis (NASH) can lead to cirrhosis and hepatocellular carcinoma in their advanced stages; however, there are currently no approved therapies. Here, we show that microRNA (miR)-33b in hepatocytes is critical for the development of NASH. miR-33b is located in the intron of sterol regulatory element–binding transcription factor 1 and is abundantly expressed in humans, but absent in rodents. miR-33b knock-in (KI) mice, which have a miR-33b sequence in the same intron of sterol regulatory element–binding transcription factor 1 as humans and express miR-33b similar to humans, exhibit NASH under high-fat diet feeding. This condition is ameliorated by hepatocyte-specific miR-33b deficiency but unaffected by macrophage-specific miR-33b deficiency. Anti-miR-33b oligonucleotide improves the phenotype of NASH in miR-33b KI mice fed a Gubra Amylin NASH diet, which induces miR-33b and worsens NASH more than a high-fat diet. Anti-miR-33b treatment reduces hepatic free cholesterol and triglyceride accumulation through up-regulation of the lipid metabolism–related target genes. Furthermore, it decreases the expression of fibrosis marker genes in cultured hepatic stellate cells. Thus, inhibition of miR-33b using nucleic acid medicine is a promising treatment for NASH
    corecore