210 research outputs found

    Pore properties of hierarchically porous carbon monoliths with high surface area obtained from bridged polysilsesquioxanes

    Get PDF
    Hierarchically porous carbon monoliths with high specific surface area have been prepared via a nano-phase extraction technique from carbon/silica composites which had been prepared from arylene-bridged polysilsesquioxanes. The nano-sized silica phase developed in the composite has been removed to increase micropores, resulting in a similar effect to thermal activation of carbons. The resultant carbons are expected to possess homogeneously distributed micropores. Here we report the changes of the pore characteristics through the synthesis process by the nitrogen adsorption–desorption method and mercury porosimetry. In particular, the growth of silica phase in carbon/silica composites at different temperatures has been characterized by the micropore analysis using the Horváth-Kawazoe method

    Highly porous melamine-formaldehyde monoliths with controlled hierarchical porosity toward application as a metal scavenger

    Get PDF
    We report a new synthetic strategy for melamine-formaldehyde (MF) monoliths with controlled hierarchical porosity toward metal-ion scavengers. The obtained MF monoliths possessed micro-, meso- and macroporosity, which allowed efficient adsorption performance of precious metal ions in water. Applications such as recovery/removal of metal ions are expected

    Sol–gel based structural designs of macropores and material shapes of metal–organic framework gels

    Get PDF
    We have developed a general synthetic strategy to control macroporous structures and material shapes of metal–organic framework (MOF) gels via a sol–gel based structural control process. A series of 1, 3, 5-benzene tricarboxylic acid (BTC) based MOF gels, Cr-BTC and Zr-BTC, have been chosen as a proof of concept

    Unusual flexibility of transparent poly(methylsilsesquioxane) aerogels by surfactant-induced mesoscopic fiber-like assembly

    Get PDF
    ガラスのように透明で曲げられるエアロゲル --高性能透明断熱材として期待--. 京都大学プレスリリース. 2024-01-19.High-performance thermal insulators represented by aerogels are regarded as one of the most promising materials for energy savings. However, significantly low mechanical strength has been a barrier for aerogels to be utilized in various social domains such as houses, buildings, and industrial plants. Here, we report a synthetic strategy to realize highly transparent aerogels with unusually high bending flexibility based on poly(methylsilsesquioxane) (PMSQ) network. We have constructed mesoscopic fine fiber-like structures of various sizes in PMSQ gels by the combination of phase separation suppression by tetramethylammonium hydroxide (TMAOH) and mesoscopic fiber-like assembly by nonionic poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-b-PPO-b-PEO) type surfactant. The optimized mesoscale structures of PMSQ gels have realized highly transparent and resilient monolithic aerogels with much high bendability compared to those reported in previous works. This work will provide a way to highly insulating materials with glasslike transparency and high mechanical flexibility

    High Dimensional Statistical Analysis and its Application to ALMA Map of NGC 253

    Full text link
    In astronomy, if we denote the dimension of data as dd and the number of samples as nn, we often meet a case with ndn \ll d. Traditionally, such a situation is regarded as ill-posed, and there was no choice but to throw away most of the information in data dimension to let d<nd < n. The data with ndn \ll d is referred to as high-dimensional low sample size (HDLSS). {}To deal with HDLSS problems, a method called high-dimensional statistics has been developed rapidly in the last decade. In this work, we first introduce the high-dimensional statistical analysis to the astronomical community. We apply two representative methods in the high-dimensional statistical analysis methods, the noise-reduction principal component analysis (NRPCA) and regularized principal component analysis (RPCA), to a spectroscopic map of a nearby archetype starburst galaxy NGC 253 taken by the Atacama Large Millimeter/Submillimeter Array (ALMA). The ALMA map is a typical HDLSS dataset. First we analyzed the original data including the Doppler shift due to the systemic rotation. The high-dimensional PCA could describe the spatial structure of the rotation precisely. We then applied to the Doppler-shift corrected data to analyze more subtle spectral features. The NRPCA and RPCA could quantify the very complicated characteristics of the ALMA spectra. Particularly, we could extract the information of the global outflow from the center of NGC 253. This method can also be applied not only to spectroscopic survey data, but also any type of data with small sample size and large dimension.Comment: 33 pages, 21 figures, accepted for publication in ApJS (Jan. 31, 2024

    High-performance liquid chromatography separation of unsaturated organic compounds by a monolithic silica column embedded with silver nanoparticles.

    Get PDF
    Article first published online: 15 JUL 2015The optimization of a porous structure to ensure good separation performances is always a significant issue in high-performance liquid chromatography column design. Recently we reported the homogeneous embedment of Ag nanoparticles in periodic mesoporous silica monolith and the application of such Ag nanoparticles embedded silica monolith for the high-performance liquid chromatography separation of polyaromatic hydrocarbons. However, the separation performance remains to be improved and the retention mechanism as compared with the Ag ion high-performance liquid chromatography technique still needs to be clarified. In this research, Ag nanoparticles were introduced into a macro/mesoporous silica monolith with optimized pore parameters for high-performance liquid chromatography separations. Baseline separation of benzene, naphthalene, anthracene, and pyrene was achieved with the theoretical plate number for analyte naphthalene as 36, 000 m(-1). Its separation function was further extended to cis/trans isomers of aromatic compounds where cis/trans stilbenes were chosen as a benchmark. Good separation of cis/trans-stilbene with separation factor as 7 and theoretical plate number as 76, 000 m(-1) for cis-stilbene was obtained. The trans isomer, however, is retained more strongly, which contradicts the long- established retention rule of Ag ion chromatography. Such behavior of Ag nanoparticles embedded in a silica column can be attributed to the differences in the molecular geometric configuration of cis/trans stilbenes

    Novel Hybrid Hydroxyapatite Spacers Ensure Sufficient Bone Bonding in Cervical Laminoplasty

    Get PDF
    Study Design Prospective observational study. Purpose This prospective analysis aimed to evaluate the efficacy and bone-bonding rate of hybrid hydroxyapatite (HA) spacers in expansive laminoplasty. Overview of Literature Various types of spacers or plates have been developed for expansive laminoplasty. Methods Expansive open-door laminoplasty was performed in 146 patients with cervical myelopathy; 450 hybrid HA spacers and 41 autogenous bone spacers harvested from the spinous processes were grafted into the opened side of each lamina. The patients were followed up using computed tomography (CT), and their bone-bonding rates for hybrid HA and autogenous spacers, bone-fusion rates of the hinges of the laminae, and complications associated with the implants were then examined. Results Clinical symptoms significantly improved in all patients, and no major complications related to the procedure were noted. The hybrid HA spacers exhibited sufficient bone bonding on postoperative CT. The hinges completely fused in over 95% patients within 1 year of the procedure. Only 4 spacers (0.9%) developed lamina sinking, and most expanded laminae maintained their positions without sinking or floating throughout the follow-up period. Conclusions Hybrid HA spacers contributed to high bone-fusion rates of the spacers and hinges of the laminae, and no complications were associated with their use. Cervical laminoplasty with these spacers is safe and simple, and it yields sufficient fixation strength while ensuring sufficient bone bonding during the immediate postoperative period

    Nonredundant Roles for CD1d-restricted Natural Killer T Cells and Conventional CD4+ T Cells in the Induction of Immunoglobulin E Antibodies in Response to Interleukin 18 Treatment of Mice

    Get PDF
    Interleukin (IL)-18 synergizes with IL-12 to promote T helper cell (Th)1 responses. Somewhat paradoxically, IL-18 administration alone strongly induces immunoglobulin (Ig)E production and allergic inflammation, indicating a role for IL-18 in the generation of Th2 responses. The ability of IL-18 to induce IgE is dependent on CD4+ T cells, IL-4, and signal transducer and activator of transcription (stat)6. Here, we show that IL-18 fails to induce IgE both in CD1d−/− mice that lack natural killer T (NKT) cells and in class II−/− mice that lack conventional CD4+ T cells. However, class II−/− mice reconstituted with conventional CD4+ T cells show the capacity to produce IgE in response to IL-18. NKT cells express high levels of IL-18 receptor (R)α chain and produce significant amounts of IL-4, IL-9, and IL-13, and induce CD40 ligand expression in response to IL-2 and IL-18 stimulation in vitro. In contrast, conventional CD4+ T cells express low levels of IL-18Rα and poorly respond to IL-2 and IL-18. Nevertheless, conventional CD4+ T cells are essential for B cell IgE responses after the administration of IL-18. These findings indicate that NKT cells might be the major source of IL-4 in response to IL-18 administration and that conventional CD4+ T cells demonstrate their helper function in the presence of NKT cells
    corecore