6,759 research outputs found

    There are no abnormal solutions of the Bethe−-Salpeter equation in the static model

    Full text link
    The four-point Green's function of static QED, where a fermion and an antifermion are located at fixed space positions, is calculated in covariant gauges. The bound state spectrum does not display any abnormal state corresponding to excitations of the relative time. The equation that was established by Mugibayashi in this model and which has abnormal solutions does not coincide with the Bethe−-Salpeter equation. Gauge transformation from the Coulomb gauge also confirms the absence of abnormal solutions in the Bethe−-Salpeter equation.Comment: 11 pages, late

    Solving the Bethe-Salpeter equation for bound states of scalar theories in Minkowski space

    Get PDF
    We apply the perturbation theory integral representation (PTIR) to solve for the bound state Bethe-Salpeter (BS) vertex for an arbitrary scattering kernel, without the need for any Wick rotation. The results derived are applicable to any scalar field theory (without derivative coupling). It is shown that solving directly for the BS vertex, rather than the BS amplitude, has several major advantages, notably its relative simplicity and superior numerical accuracy. In order to illustrate the generality of the approach we obtain numerical solutions using this formalism for a number of scattering kernels, including cases where the Wick rotation is not possible.Comment: 28 pages of LaTeX, uses psfig.sty with 5 figures. Also available via WWW at http://www.physics.adelaide.edu.au/theory/papers/ADP-97-10.T248-abs.html or via anonymous ftp at ftp://bragg.physics.adelaide.edu.au/pub/theory/ADP-97-10.T248.ps A number of (crucial) typographical errors in Appendix C corrected. To be published in Phys. Rev. D, October 199

    Relativistically Covariant Symmetry in QED

    Get PDF
    We construct a relativistically covariant symmetry of QED. Previous local and nonlocal symmetries are special cases. This generalized symmetry need not be nilpotent, but nilpotency can be arranged with an auxiliary field and a certain condition. The Noether charge generating the symmetry transformation is obtained, and it imposes a constraint on the physical states.Comment: Latex file, 9 page

    Elastic properties of the Non-Fermi liquid metal CeRu4Sb12Ce Ru_4 Sb_{12} and the Dense Kondo semiconductor CeOs4Sb12Ce Os_4 Sb_{12}

    Get PDF
    We have investigated the elastic properties of the Ce-based filled skutterudite antimonides CeRu4_{4}Sb12_{12} and CeOs4_{4}Sb12_{12} by means of ultrasonic measurements. CeRu4_{4}Sb12_{12} shows a slight increase around 130 K in the temperature dependence of the elastic constants CC11_{11}, (CC11_{11}-CC12_{12})/2 and CC44_{44}. No apparent softening toward low temperature due to a quadrupolar response of the 4ff-electronic ground state of the Ce ion was observed at low temperatures. In contrast CeOs4_{4}Sb12_{12} shows a pronounced elastic softening toward low temperature in the longitudinal CC11_{11} as a function of temperature (TT) below about 15 K, while a slight elastic softening was observed in the transverse CC44_{44} below about 1.5 K. Furthermore, CeOs4_{4}Sb12_{12} shows a steep decrease around a phase transition temperature of 0.9 K in both CC11_{11} andC C44_{44}. The elastic softening observed in CC11_{11} below about 15 K cannot be explained reasonably only by the crystalline electric field effect. It is most likely to be responsible for the coupling between the elastic strain and the quasiparticle band with a small energy gap in the vicinity of Fermi level. The elastic properties and the 4ff ground state of Ce ions in CeRu4_{4}Sb12_{12} and CeOs4_{4}Sb12_{12} are discussed from the viewpoint of the crystalline electric field effect and the band structure in the vicinity of Fermi level.Comment: 9 pages, 11 figures, regular pape

    On the Composition of Gauge Structures

    Get PDF
    A formulation for a non-trivial composition of two classical gauge structures is given: Two parent gauge structures of a common base space are synthesized so as to obtain a daughter structure which is fundamental by itself. The model is based on a pair of related connections that take their values in the product space of the corresponding Lie algebras. The curvature, the covariant exterior derivatives and the associated structural identities, all get contributions from both gauge groups. The various induced structures are classified into those whose composition is given just by trivial means, and those which possess an irreducible nature. The pure irreducible piece, in particular, generates a complete super-space of ghosts with an attendant set of super-BRST variation laws, both of which are purely of a geometrical origin.Comment: Few elaborations are added to section 4 and section 5. To be published in Journal of Physics A: Mathematical and General. 21 page

    Two-Point Functions of Coulomb Gauge Yang-Mills Theory

    Full text link
    The functional approach to Coulomb gauge Yang-Mills theory is considered within the standard, second order, formalism. The Dyson-Schwinger equations and Slavnov-Taylor identities concerning the two-point functions are derived explicitly and one-loop perturbative results are presented.Comment: 12 pages, no figure

    On The Origin Of The Gamma Rays From The Galactic Center

    Full text link
    The region surrounding the center of the Milky Way is both astrophysically rich and complex, and is predicted to contain very high densities of dark matter. Utilizing three years of data from the Fermi Gamma Ray Space Telescope (and the recently available Pass 7 ultraclean event class), we study the morphology and spectrum of the gamma ray emission from this region and find evidence of a spatially extended component which peaks at energies between 300 MeV and 10 GeV. We compare our results to those reported by other groups and find good agreement. The extended emission could potentially originate from either the annihilations of dark matter particles in the inner galaxy, or from the collisions of high energy protons that are accelerated by the Milky Way's supermassive black hole with gas. If interpreted as dark matter annihilation products, the emission spectrum favors dark matter particles with a mass in the range of 7-12 GeV (if annihilating dominantly to leptons) or 25-45 GeV (if annihilating dominantly to hadronic final states). The intensity of the emission corresponds to a dark matter annihilation cross section consistent with that required to generate the observed cosmological abundance in the early universe (sigma v ~ 3 x 10^-26 cm^3/s). We also present conservative limits on the dark matter annihilation cross section which are at least as stringent as those derived from other observations.Comment: 13 pages, 11 figure
    • …
    corecore