47,121 research outputs found

    Localization length of a soliton from a non-magnetic impurity in a general double-spin-chain model

    Full text link
    A localization length of a free-spin soliton from a non-magnetic impurity is deduced in a general double-spin-chain model (J0−J1−J2−J3J_0-J_1-J_2-J_3 model). We have solved a variational problem which employs the nearest-neighbor singlet-dimer basis. The wave function of a soliton is expressed by the Airy function, and the localization length (ξ)(\xi) is found to obey a power law of the dimerization (J2−J3)(J_2-J_3) with an exponent -1/3; ξ∼(J2−J3)−1/3\xi\sim (J_2-J_3)^{-1/3}. This explains why NaV_2O_5 does not show the antiferromagnetic order, while CuGeO_3 does by impurity doping. When the gap exists by the bond-dimerization, a soliton is localized and no order is expected. Contrary, there is a possibility of the order when the gap is mainly due to frustration.Comment: 4 pages, REVTeX, Figures are in eps-file

    Ti and V layers retard interaction between Al films and polycrystalline Si

    Get PDF
    Fine-grained polycrystalline Si (poly Si) in contact with Al films recrystallizes at temperatures well below the Si-Al eutectic (577 °C). We show that this interaction can be deferred or suppressed by placing a buffer layer of Ti or V between the Al film and the poly Si. During annealing, Ti or V form TiAl3 or Val3 at the buffer-layer–Al-film interface, but do not react with the poly Si so that the integrity of the poly Si is preserved as long as some unreacted Ti or V remains. The reaction between the Ti or V layer and the Al film is transport limited ([proportional]t^1/2) and characterized by the diffusion constants 1.5×10^15 exp(–1.8eV/kT) Å^2/sec or 8.4×10^12 exp(–1.7eV/kT) Å^2/sec, respectively

    Possible direct method to determine the radius of a star from the spectrum of gravitational wave signals

    Get PDF
    We computed the spectrum of gravitational waves from a dust disk star of radius R inspiraling into a Kerr black hole of mass M and specific angular momentum a. We found that when R is much larger than the wave length of the quasinormal mode, the spectrum has several peaks and the separation of peaks Δω\Delta\omega is proportional to R−1R^{-1} irrespective of M and a. This suggests that the radius of the star in coalescing binary black hole - star systems may be determined directly from the observed spectrum of gravitational wave. This also suggests that the spectrum of the radiation may give us important information in gravitational wave astronomy as in optical astronomy.Comment: 4 pages with 3 eps figures, revtex.sty, accepted for publication in Phys. Rev. Let

    Rabi Oscillations in Landau-Quantized Graphene

    Full text link
    We investigate the relation between the canonical model of quantum optics, the Jaynes-Cummings Hamiltonian and Dirac fermions in quantizing magnetic field. We demonstrate that Rabi oscillations are observable in the optical response of graphene, providing us with a transparent picture about the structure of optical transitions. While the longitudinal conductivity reveals chaotic Rabi oscillations, the Hall component measures coherent ones. This opens up the possibility of investigating a microscopic model of a few quantum objects in a macroscopic experiment with tunable parameters.Comment: 5 pages, 4 figure

    Ground-state phase diagram of the one-dimensional Hubbard-model with an alternating potential

    Full text link
    We investigate the ground-state phase diagram of the one-dimensional half-filled Hubbard model with an alternating potential--a model for the charge-transfer organic materials and the ferroelectric perovskites. We numerically determine the global phase diagram of this model using the level-crossing and the phenomenological renormalization-group methods based on the exact diagonalization calculations. Our results support the mechanism of the double phase transitions between Mott and a band insulators pointed out by Fabrizio, Gogolin, and Nersesyan [Phys. Rev. Lett. 83, 2014 (1999)]: We confirm the existence of the spontaneously dimerized phase as an intermediate state. Further we provide numerical evidences to check the criticalities on the phase boundaries. Especially, we perform the finite-size-scaling analysis of the excitation gap to show the two-dimensional Ising transition in the charge part. On the other hand, we confirm that the dimerized phase survives in the strong-coupling limit, which is one of the resultants of competition between the ionicity and correlation effects.Comment: 8 pages, 8 figure

    Measured Quantum Fourier Transform of 1024 Qubits on Fiber Optics

    Full text link
    Quantum Fourier transform (QFT) is a key function to realize quantum computers. A QFT followed by measurement was demonstrated on a simple circuit based on fiber-optics. The QFT was shown to be robust against imperfections in the rotation gate. Error probability was estimated to be 0.01 per qubit, which corresponded to error-free operation on 100 qubits. The error probability can be further reduced by taking the majority of the accumulated results. The reduction of error probability resulted in a successful QFT demonstration on 1024 qubits.Comment: 15 pages, 6 figures, submitted to EQIS 2003 Special issue, Int. J. Quantum Informatio

    Vanishing of the negative-sign problem of quantum Monte Carlo simulations in one-dimensional frustrated spin systems

    Full text link
    The negative-sign problem in one-dimensional frustrated quantum spin systems is solved. We can remove negative signs of the local Boltzmann weights by using a dimer basis that has the spin-reversal symmetry. Validity of this new basis is checked in a general frustrated double-spin-chain system, namely the J_0-J_1-J_2-J_3 model. The negative sign vanishes perfectly for J0+J1≤J3J_0 + J_1 \leq J_3.Comment: 4 pages, REVTeX, 4 figures in eps-file

    General formulation of general-relativistic higher-order gauge-invariant perturbation theory

    Full text link
    Gauge-invariant treatments of general-relativistic higher-order perturbations on generic background spacetime is proposed. After reviewing the general framework of the second-order gauge-invariant perturbation theory, we show the fact that the linear-order metric perturbation is decomposed into gauge-invariant and gauge-variant parts, which was the important premis of this general framework. This means that the development the higher-order gauge-invariant perturbation theory on generic background spacetime is possible. A remaining issue to be resolve is also disscussed.Comment: 4 pages, no figure. (v3) some explanations are added and a reference is adde
    • …
    corecore