191 research outputs found
Total Vertebrectomy for Non-Small Cell Lung Cancer
We present a case who had left upper lobectomy with total vertebrectomy after arterial embolization in preparation for intraoperative bleeding. A 35-year-old man complained of left back pain. Chest CT revealed a tumor in S1+2 of the left lung, invading the third thoracic vertebra. As no nodal or distant metastasis was detected, we performed left upper lobectomy and lymph node dissection (ND2a-2) after embolization of the vessels feeding the tumor in order to reduce intraoperative bleeding. In addition, the team of orthopedics performed en bloc resection of the third thoracic vertebra and parts of the left third and fourth ribs. Histological examination of the tumor revealed pleomorphic carcinoma (pT4N0M0, stage IIIA)
Health improvement framework for actionable treatment planning using a surrogate Bayesian model
効果的な健康改善プランを提案するAIを開発 --個別化医療における健康介入への活用に期待--. 京都大学プレスリリース. 2021-05-28.Clinical decision-making regarding treatments based on personal characteristics leads to effective health improvements. Machine learning (ML) has been the primary concern of diagnosis support according to comprehensive patient information. A prominent issue is the development of objective treatment processes in clinical situations. This study proposes a framework to plan treatment processes in a data-driven manner. A key point of the framework is the evaluation of the actionability for personal health improvements by using a surrogate Bayesian model in addition to a high-performance nonlinear ML model. We first evaluate the framework from the viewpoint of its methodology using a synthetic dataset. Subsequently, the framework is applied to an actual health checkup dataset comprising data from 3132 participants, to lower systolic blood pressure and risk of chronic kidney disease at the individual level. We confirm that the computed treatment processes are actionable and consistent with clinical knowledge for improving these values. We also show that the improvement processes presented by the framework can be clinically informative. These results demonstrate that our framework can contribute toward decision-making in the medical field, providing clinicians with deeper insights
A New Deep State-Space Analysis Framework for Patient Latent State Estimation and Classification from EHR Time Series Data
Many diseases, including cancer and chronic conditions, require extended
treatment periods and long-term strategies. Machine learning and AI research
focusing on electronic health records (EHRs) have emerged to address this need.
Effective treatment strategies involve more than capturing sequential changes
in patient test values. It requires an explainable and clinically interpretable
model by capturing the patient's internal state over time.
In this study, we propose the "deep state-space analysis framework," using
time-series unsupervised learning of EHRs with a deep state-space model. This
framework enables learning, visualizing, and clustering of temporal changes in
patient latent states related to disease progression.
We evaluated our framework using time-series laboratory data from 12,695
cancer patients. By estimating latent states, we successfully discover latent
states related to prognosis. By visualization and cluster analysis, the
temporal transition of patient status and test items during state transitions
characteristic of each anticancer drug were identified. Our framework surpasses
existing methods in capturing interpretable latent space. It can be expected to
enhance our comprehension of disease progression from EHRs, aiding treatment
adjustments and prognostic determinations.Comment: 21 pages, 6 figure
Lack of association of genetic variation in chromosome region 15q14-22.1 with type 2 diabetes in a Japanese population
Background: Chromosome 15q14-22.1 has been linked to type 2 diabetes (T2D) and its related traits in Japanese and other populations. The presence of T2D disease susceptibility variant(s) was assessed in the 21.8 Mb region between D15S118 and D15S117 in a Japanese population using a region-wide case-control association test.
Methods: A two-stage association test was performed using Japanese subjects: The discovery panel (Stage 1) used 372 cases and 360 controls, while an independent replication panel (Stage 2) used 532 cases and 530 controls. A total of 1,317 evenly-spaced, common SNP markers with minor allele frequencies > 0.10 were typed for each stage. Captured genetic variation was examined in HapMap JPT SNPs, and a haplotype-based association test was performed.
Results: SNP2140 (rs2412747) (C/T) in intron 33 of the ubiquitin protein ligase E3 component n-recognin 1 (UBR1) gene was selected as a landmark SNP based on repeated significant associations in Stage 1 and Stage 2. However, the marginal p value (p = 0.0043 in the allelic test, OR = 1.26, 95% CI = 1.07–1.48 for combined samples) was weak in a single locus or haplotype-based association test. We failed to find any significant SNPs after correcting for multiple testing.
Conclusion: The two-stage association test did not reveal a strong association between T2D and any common variants on chromosome 15q14-22.1 in 1,794 Japanese subjects. A further association test with a larger sample size and denser SNP markers is required to confirm these observations
Interplay between DNA polymerases β and λ in repair of oxidation DNA damage in chicken DT40 cells
DNA polymerase λ (Pol λ) is a DNA polymerase β (Pol β)-like enzyme with both DNA synthetic and 5'-deoxyribose-5'-phosphate lyase domains. Resent biochemical studies implicated Pol λ as a backup enzyme to Pol ß in the mammalian base excision repair (BER) pathway. To examine the interrelationship between Pol λ and Pol ß in BER of DNA damage in living cells, we disrupted the genes for both enzymes either singly or in combination in the chicken DT40 cell line and then characterized BER phenotypes. Disruption of the genes for both polymerases caused hypersensitivity to H2O2-induced cytotoxicity, whereas the effect of disruption of either polymerase alone was only modest. Similarly, BER capacity in cells after H2O2 exposure was lower in Pol β−/−/Pol λ−/− cells than in Pol β−/−, wild-type and Pol λ−/− cells, which were equivalent. These results suggest that these polymerases can complement for one another in counteracting oxidative DNA damage. Similar results were obtained in assays for in vitro BER capacity using cell extracts. With MMS-induced cytotoxicity, there was no significant effect on either survival or BER capacity from Pol λ gene disruption. A strong hypersensitivity and reduction in BER capacity was observed for Pol β−/−/Pol λ−/− and Pol β−/− cells, suggesting that Pol β had a dominant role in counteracting alkylation DNA damage in this cell system
Calcium Channel Blockers, More than Diuretics, Enhance Vascular Protective Effects of Angiotensin Receptor Blockers in Salt-Loaded Hypertensive Rats
The combination therapy of an angiotensin receptor blocker (ARB) with a calcium channel blocker (CCB) or with a diuretic is favorably recommended for the treatment of hypertension. However, the difference between these two combination therapies is unclear. The present work was undertaken to examine the possible difference between the two combination therapies in vascular protection. Salt-loaded stroke-prone spontaneously hypertensive rats (SHRSP) were divided into 6 groups, and they were orally administered (1) vehicle, (2) olmesartan, an ARB, (3) azelnidipine, a CCB, (4) hydrochlorothiazide, a diuretic, (5) olmesartan combined with azelnidipine, or (6) olmesartan combined with hydrochlorothiazide. Olmesartan combined with either azelnidipine or hydrochlorothiazide ameliorated vascular endothelial dysfunction and remodeling in SHRSP more than did monotherapy with either agent. However, despite a comparable blood pressure lowering effect between the two treatments, azelnidipine enhanced the amelioration of vascular endothelial dysfunction and remodeling by olmesartan to a greater extent than did hydrochlorothiazide in salt-loaded SHRSP. The increased enhancement by azelnidipine of olmesartan-induced vascular protection than by hydrochlorothiazide was associated with a greater amelioration of vascular nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation, superoxide, mitogen-activated protein kinase activation, and with a greater activation of the Akt/endothelial nitric oxide synthase (eNOS) pathway. These results provided the first evidence that a CCB potentiates the vascular protective effects of an ARB in salt-sensitive hypertension, compared with a diuretic, and provided a novel rationale explaining the benefit of the combination therapy with an ARB and a CCB
Lack of association of genetic variation in chromosome region 15q14-22.1 with type 2 diabetes in a Japanese population
<p>Abstract</p> <p>Background</p> <p>Chromosome 15q14-22.1 has been linked to type 2 diabetes (T2D) and its related traits in Japanese and other populations. The presence of T2D disease susceptibility variant(s) was assessed in the 21.8 Mb region between <it>D15S118 </it>and <it>D15S117 </it>in a Japanese population using a region-wide case-control association test.</p> <p>Methods</p> <p>A two-stage association test was performed using Japanese subjects: The discovery panel (Stage 1) used 372 cases and 360 controls, while an independent replication panel (Stage 2) used 532 cases and 530 controls. A total of 1,317 evenly-spaced, common SNP markers with minor allele frequencies > 0.10 were typed for each stage. Captured genetic variation was examined in HapMap JPT SNPs, and a haplotype-based association test was performed.</p> <p>Results</p> <p>SNP2140 (rs2412747) (<it>C/T</it>) in intron 33 of the ubiquitin protein ligase E3 component n-recognin 1 (<it>UBR1</it>) gene was selected as a landmark SNP based on repeated significant associations in Stage 1 and Stage 2. However, the marginal <it>p </it>value (<it>p </it>= 0.0043 in the allelic test, OR = 1.26, 95% CI = 1.07–1.48 for combined samples) was weak in a single locus or haplotype-based association test. We failed to find any significant SNPs after correcting for multiple testing.</p> <p>Conclusion</p> <p>The two-stage association test did not reveal a strong association between T2D and any common variants on chromosome 15q14-22.1 in 1,794 Japanese subjects. A further association test with a larger sample size and denser SNP markers is required to confirm these observations.</p
Genetic Evidence for Single-Strand Lesions Initiating Nbs1-Dependent Homologous Recombination in Diversification of Ig V in Chicken B Lymphocytes
Homologous recombination (HR) is initiated by DNA double-strand breaks (DSB). However, it remains unclear whether single-strand lesions also initiate HR in genomic DNA. Chicken B lymphocytes diversify their Immunoglobulin (Ig) V genes through HR (Ig gene conversion) and non-templated hypermutation. Both types of Ig V diversification are initiated by AID-dependent abasic-site formation. Abasic sites stall replication, resulting in the formation of single-stranded gaps. These gaps can be filled by error-prone DNA polymerases, resulting in hypermutation. However, it is unclear whether these single-strand gaps can also initiate Ig gene conversion without being first converted to DSBs. The Mre11-Rad50-Nbs1 (MRN) complex, which produces 3′ single-strand overhangs, promotes the initiation of DSB-induced HR in yeast. We show that a DT40 line expressing only a truncated form of Nbs1 (Nbs1p70) exhibits defective HR-dependent DSB repair, and a significant reduction in the rate—though not the fidelity—of Ig gene conversion. Interestingly, this defective gene conversion was restored to wild type levels by overproduction of Escherichia coli SbcB, a 3′ to 5′ single-strand–specific exonuclease, without affecting DSB repair. Conversely, overexpression of chicken Exo1 increased the efficiency of DSB-induced gene-targeting more than 10-fold, with no effect on Ig gene conversion. These results suggest that Ig gene conversion may be initiated by single-strand gaps rather than by DSBs, and, like SbcB, the MRN complex in DT40 may convert AID-induced lesions into single-strand gaps suitable for triggering HR. In summary, Ig gene conversion and hypermutation may share a common substrate—single-stranded gaps. Genetic analysis of the two types of Ig V diversification in DT40 provides a unique opportunity to gain insight into the molecular mechanisms underlying the filling of gaps that arise as a consequence of replication blocks at abasic sites, by HR and error-prone polymerases
- …