292 research outputs found
Transit Time Effect on Voltage Contrast in the Stroboscopic Scanning Electron Microscope
Voltage contrast varies if the specimen voltage changes within the secondary electron transit time through the specimen electric field. This effect would affect the time resolution in stroboscopic scanning electron microscopy. The method to calculate the transit time effect that was described in a previous paper is reviewed. The calculated results agreed well with the experiment in which a specially designed specimen is used to estimate the applied voltage as exactly as possible
Intrinsic Low Temperature Paramagnetism in B-DNA
We present experimental study of magnetization in -DNA in
conjunction with structural measurements. The results show the surprising
interplay between the molecular structures and their magnetic property. In the
B-DNA state, -DNA exhibits paramagnetic behaviour below 20 K that is
non-linear in applied magnetic field whereas in the A-DNA state, remains
diamagnetic down to 2 K. We propose orbital paramagnetism as the origin of the
observed phenomena and discuss its relation to the existence of long range
coherent transport in B-DNA at low temperature.Comment: 5 pages, 4 figures, submitted to Physical Review Letters October 200
Growth of a dynamical correlation length in an aging superspin glass
We report on zero field cooled magnetization relaxation experiments on a
concen- trated frozen ferrofluid exhibiting a low temperature superspin glass
transition. With a method initially developed for spin glasses, we investigate
the field dependence of the relaxations that take place after different aging
times. We extract the typical number of correlated spins involved in the aging
dynamics. This brings important insights into the dynamical correlation length
and its time growth. Our results, consistent with expressions obtained for spin
glasses, extend the generality of these behaviours to the class of superspin
glasses. Since the typical flipping time is much larger for superspins than for
atomic spins, our experiments probe a time regime much closer to that of
numerical simulations
Non-generality of the Kadowaki-Woods ratio in correlated oxides
An explicit expression for the Kadowaki-Woods ratio in correlated metals is
derived by invoking saturation of the (high-frequency) Fermi-liquid scattering
rate at the Mott-Ioffe-Regel limit. Significant deviations observed in a number
of oxides are quantitatively explained due to variations in carrier density,
dimensionality, unit cell volume and the number of individual sheets in the
Brillouin zone. A generic re-scaling of the original Kadowaki-Woods plot is
also presented.Comment: 9 pages of text, 1 table, 2 figure
Optical and Thermal-Transport Properties of an Inhomogeneous d-Wave Superconductor
We calculate transport properties of disordered 2D d-wave superconductors
from solutions of the Bogoliubov-de Gennes equations, and show that weak
localization effects give rise to a finite frequency peak in the optical
conductivity similar to that observed in experiments on disordered cuprates. At
low energies, order parameter inhomogeneities induce linear and quadratic
temperature dependencies in microwave and thermal conductivities respectively,
and appear to drive the system towards a quasiparticle insulating phase.Comment: 5 pages,3 figure
Effect of controlled disorder on quasiparticle thermal transport in BiSrCaCuO
Low temperature thermal conductivity, , of optimally-doped Bi2212 was
studied before and after the introduction of point defects by electron
irradiation. The amplitude of the linear component of remains
unchanged, confirming the universal nature of heat transport by zero-energy
quasiparticles. The induced decrease in the absolute value of at
finite temperatures allows us to resolve a nonuniversal term in due to
conduction by finite-energy quasiparticles. The magnitude of this term provides
an estimate of the quasiparticle lifetime at subkelvin temperatures.Comment: 5 pages including 2 .eps figuer
- …