39 research outputs found

    Pharmacogenetics Meets Metabolomics: Discovery of Tryptophan as a New Endogenous OCT2 Substrate Related to Metformin Disposition

    Get PDF
    Genetic polymorphisms of the organic cation transporter 2 (OCT2), encoded by SLC22A2, have been investigated in association with metformin disposition. A functional decrease in transport function has been shown to be associated with the OCT2 variants. Using metabolomics, our study aims at a comprehensive monitoring of primary metabolite changes in order to understand biochemical alteration associated with OCT2 polymorphisms and discovery of potential endogenous metabolites related to the genetic variation of OCT2. Using GC-TOF MS based metabolite profiling, clear clustering of samples was observed in Partial Least Square Discriminant Analysis, showing that metabolic profiles were linked to the genetic variants of OCT2. Tryptophan and uridine presented the most significant alteration in SLC22A2-808TT homozygous and the SLC22A2-808G>T heterozygous variants relative to the reference. Particularly tryptophan showed gene-dose effects of transporter activity according to OCT2 genotypes and the greatest linear association with the pharmacokinetic parameters (Clrenal, Clsec, Cl/F/kg, and Vd/F/kg) of metformin. An inhibition assay demonstrated the inhibitory effect of tryptophan on the uptake of 1-methyl-4-phenyl pyrinidium in a concentration dependent manner and subsequent uptake experiment revealed differential tryptophan-uptake rate in the oocytes expressing OCT2 reference and variant (808G>T). Our results collectively indicate tryptophan can serve as one of the endogenous substrate for the OCT2 as well as a biomarker candidate indicating the variability of the transport activity of OCT2

    Interlaboratory Variability in the Madin-Darby Canine Kidney Cell Proteome.

    No full text
    Madin-Darby canine kidney (MDCK) cells are widely used to study epithelial cell functionality. Their low endogenous drug transporter protein levels make them an amenable system to investigate transepithelial permeation and drug transporter protein activity after their transfection. MDCK cells display diverse phenotypic traits, and as such, laboratory-to-laboratory variability in drug permeability assessments is observed. Consequently, in vitro-in vivo extrapolation (IVIVE) approaches using permeability and/or transporter activity data require calibration. A comprehensive proteomic quantification of 11 filter-grown parental or mock-transfected MDCK monolayers from 8 different pharmaceutical laboratories using the total protein approach (TPA) is provided. The TPA enables estimations of key morphometric parameters such as monolayer cellularity and volume. Overall, metabolic liability to xenobiotics is likely to be limited for MDCK cells due to the low expression of required enzymes. SLC16A1 (MCT1) was the highest abundant SLC transporter linked to xenobiotic activity, while ABCC4 (MRP4) was the highest abundant ABC transporter. Our data supports existing findings that claudin-2 levels may be linked to tight junction modulation, thus impacting trans-epithelial resistance. This unique database provides data on more than 8000 protein copy numbers and concentrations, thus allowing an in-depth appraisal of the control monolayers used in each laboratory

    Pharmacological Inhibition of Monoacylglycerol O-Acyltransferase 2 Improves Hyperlipidemia, Obesity, and Diabetes by Change in Intestinal Fat Utilization

    No full text
    <div><p>Monoacylglycerol O-acyltransferase 2 (MGAT2) catalyzes the synthesis of diacylglycerol (DG), a triacylglycerol precursor and potential peripheral target for novel anti-obesity therapeutics. High-throughput screening identified lead compounds with MGAT2 inhibitory activity. Through structural modification, a potent, selective, and orally bioavailable MGAT2 inhibitor, compound A (compA), was discovered. CompA dose-dependently inhibited postprandial increases in plasma triglyceride (TG) levels. Metabolic flux analysis revealed that compA inhibited triglyceride/diacylglycerol resynthesis in the small intestine and increased free fatty acid and acyl-carnitine with shorter acyl chains than originally labelled fatty acid. CompA decreased high-fat diet (HFD) intake in C57BL/6J mice. MGAT2-null mice showed a similar phenotype as compA-treated mice and compA did not suppress a food intake in MGAT2 KO mice, indicating that the anorectic effects were dependent on MGAT2 inhibition. Chronic administration of compA significantly prevented body weight gain and fat accumulation in mice fed HFD. MGAT2 inhibition by CompA under severe diabetes ameliorated hyperglycemia and fatty liver in HFD-streptozotocin (STZ)-treated mice. Homeostatic model assessments (HOMA-IR) revealed that compA treatment significantly improved insulin sensitivity. The proximal half of the small intestine displayed weight gain following compA treatment. A similar phenomenon has been observed in Roux-en-Y gastric bypass-treated animals and some studies have reported that this intestinal remodeling is essential to the anti-diabetic effects of bariatric surgery. These results clearly demonstrated that MGAT2 inhibition improved dyslipidemia, obesity, and diabetes, suggesting that compA is an effective therapeutic for obesity-related metabolic disorders.</p></div

    Acute anorectic effect of compA under high-fat diet (HFD)-feeding conditions.

    No full text
    <p>Fasted mice were orally administrated vehicle or compA and were fed either HFD or normal chow (NC) for 2 h. (A) Amount of HFD intake by C57BL/6J mice. (B) Amount of HFD intake by vehicle or 10 mg/kg compA-treated MGAT2 KO mice and WT littermates. (C) Amount of NC or HFD intake by vehicle or 10 mg/kg compA-treated C57BL/6J mice. n = 5 (A, B) or n = 7 (C). #: <i>P</i> < 0.025 vs. vehicle group by one-tailed Williams’ test. %%%: <i>P</i> < 0.001 vs. vehicle-administrated WT mice by Student’s t-test. *: <i>P</i> < 0.05 vs. HFD-fed vehicle group by Student's t-test. N.S.: not significant.</p
    corecore