3,235 research outputs found

    Towards the application of the Maximum Entropy Method to finite temperature Upsilon Spectroscopy

    Full text link
    According to the Narnhofer Thirring Theorem interacting systems at finite temperature cannot be described by particles with a sharp dispersion law. It is therefore mandatory to develop new methods to extract particle masses at finite temperature. The Maximum Entropy method offers a path to obtain the spectral function of a particle correlation function directly. We have implemented the method and tested it with zero temperature Upsilon correlation functions obtained from an NRQCD simulation. Results for different smearing functions are discussed.Comment: Lattice 2000 (Finite Temperature

    Quantization and 2Ï€2\pi Periodicity of the Axion Action in Topological Insulators

    Full text link
    The Lagrangian describing the bulk electromagnetic response of a three-dimensional strong topological insulator contains a topological `axion' term of the form '\theta E dot B'. It is often stated (without proof) that the corresponding action is quantized on periodic space-time and therefore invariant under '\theta -> \theta +2\pi'. Here we provide a simple, physically motivated proof of the axion action quantization on the periodic space-time, assuming only that the vector potential is consistent with single-valuedness of the electron wavefunctions in the underlying insulator.Comment: 4 pages, 1 figure, version2 (section on axion action quantization of non-periodic systems added

    Dynamical invariants for quantum control of four-level systems

    Full text link
    We present a Lie-algebraic classification and detailed construction of the dynamical invariants, also known as Lewis-Riesenfeld invariants, of the four-level systems including two-qubit systems which are most relevant and sufficiently general for quantum control and computation. These invariants not only solve the time-dependent Schr\"odinger equation of four-level systems exactly but also enable the control, and hence quantum computation based on which, of four-level systems fast and beyond adiabatic regimes.Comment: 11 pages, 5 table

    Coreless and singular vortex lattices in rotating spinor Bose-Einstein condensates

    Full text link
    We theoretically investigate vortex-lattice phases of rotating spinor Bose-Einstein condensates (BEC) with the ferromagnetic spin-interaction by numerically solving the Gross-Pitaevskii equation. The spinor BEC under slow rotation can sustain a rich variety of exotic vortices due to the multi-component order parameters, such as the Mermin-Ho and Anderson-Toulouse coreless vortices (the 2-dimensional skyrmion and meron) and the non-axisymmetric vortices with the sifting vortex cores. Here, we present the spin texture of various vortex-lattice states at higher rotation rates and in the presence of the external magnetic field. In addition, the vortex phase diagram is constructed in the plane by the total magnetization MM and the external rotation frequency Ω\Omega by comparing the free energies of possible vortices. It is shown that the vortex phase diagram in a MM-Ω\Omega plane may be divided into two categories; (i) the coreless vortex lattice formed by the several types of Mermin-Ho vortices and (ii) the vortex lattice filling in the cores with the pure polar (antiferromagnetic) state. In particular, it is found that the type-(ii) state forms the composite lattices of coreless and polar-core vortices. The difference between the type-(i) and type-(ii) results from the existence of the singularity of the spin textures, which may be experimentally confirmed by the spin imaging within polarized light recently proposed by Carusotto and Mueller. We also discussed on the stability of triangular and square lattice states for rapidly rotating condensates.Comment: to be published in Phys. Rev.

    Dynamically stable multiply quantized vortices in dilute Bose-Einstein condensates

    Full text link
    Multiquantum vortices in dilute atomic Bose-Einstein condensates confined in long cigar-shaped traps are known to be both energetically and dynamically unstable. They tend to split into single-quantum vortices even in the ultralow temperature limit with vanishingly weak dissipation, which has also been confirmed in the recent experiments [Y. Shin et al., Phys. Rev. Lett. 93, 160406 (2004)] utilizing the so-called topological phase engineering method to create multiquantum vortices. We study the stability properties of multiquantum vortices in different trap geometries by solving the Bogoliubov excitation spectra for such states. We find that there are regions in the trap asymmetry and condensate interaction strength plane in which the splitting instability of multiquantum vortices is suppressed, and hence they are dynamically stable. For example, the doubly quantized vortex can be made dynamically stable even in spherical traps within a wide range of interaction strength values. We expect that this suppression of vortex-splitting instability can be experimentally verified.Comment: 5 pages, 6 figure

    Experimental determination of the Berry phase in a superconducting charge pump

    Get PDF
    We present the first measurements of the Berry phase in a superconducting Cooper pair pump. A fixed amount of Berry phase is accumulated to the quantum-mechanical ground state in each adiabatic pumping cycle, which is determined by measuring the charge passing through the device. The dynamic and geometric phases are identified and measured quantitatively from their different response when pumping in opposite directions. Our observations, in particular, the dependencies of the dynamic and geometric effects on the superconducting phase bias across the pump, agree with the basic theoretical model of coherent Cooper pair pumping.Comment: 4 pages, 3 figure

    Minimal and Robust Composite Two-Qubit Gates with Ising-Type Interaction

    Full text link
    We construct a minimal robust controlled-NOT gate with an Ising-type interaction by which elementary two-qubit gates are implemented. It is robust against inaccuracy of the coupling strength and the obtained quantum circuits are constructed with the minimal number (N=3) of elementary two-qubit gates and several one-qubit gates. It is noteworthy that all the robust circuits can be mapped to one-qubit circuits robust against a pulse length error. We also prove that a minimal robust SWAP gate cannot be constructed with N=3, but requires N=6 elementary two-qubit gates.Comment: 7 pages, 2 figure

    Translations and dynamics

    Full text link
    We analyze the role played by local translational symmetry in the context of gauge theories of fundamental interactions. Translational connections and fields are introduced, with special attention being paid to their universal coupling to other variables, as well as to their contributions to field equations and to conserved quantities.Comment: 22 Revtex pages, no figures. Published version with minor correction
    • …
    corecore