2,018 research outputs found

    On the zero of the fermion zero mode

    Full text link
    We argue that the fermionic zero mode in non-trivial gauge field backgrounds must have a zero. We demonstrate this explicitly for calorons where its location is related to a constituent monopole. Furthermore a topological reasoning for the existence of the zero is given which therefore will be present for any non-trivial configuration. We propose the use of this property in particular for lattice simulations in order to uncover the topological content of a configuration.Comment: 6 pages, 3 figures in 5 part

    Designing Robust Unitary Gates: Application to Concatenated Composite Pulse

    Full text link
    We propose a simple formalism to design unitary gates robust against given systematic errors. This formalism generalizes our previous observation [Y. Kondo and M. Bando, J. Phys. Soc. Jpn. 80, 054002 (2011)] that vanishing dynamical phase in some composite gates is essential to suppress amplitude errors. By employing our formalism, we naturally derive a new composite unitary gate which can be seen as a concatenation of two known composite unitary operations. The obtained unitary gate has high fidelity over a wider range of the error strengths compared to existing composite gates.Comment: 7 pages, 4 figures. Major revision: improved presentation in Sec. 3, references and appendix adde

    Dual Formulation of the Lie Algebra S-expansion Procedure

    Full text link
    The expansion of a Lie algebra entails finding a new, bigger algebra G, through a series of well-defined steps, from an original Lie algebra g. One incarnation of the method, the so-called S-expansion, involves the use of a finite abelian semigroup S to accomplish this task. In this paper we put forward a dual formulation of the S-expansion method which is based on the dual picture of a Lie algebra given by the Maurer-Cartan forms. The dual version of the method is useful in finding a generalization to the case of a gauge free differential algebra, which in turn is relevant for physical applications in, e.g., Supergravity. It also sheds new light on the puzzling relation between two Chern-Simons Lagrangians for gravity in 2+1 dimensions, namely the Einstein-Hilbert Lagrangian and the one for the so-called "exotic gravity".Comment: 12 pages, no figure

    Continuous vortex pumping into a spinor condensate with magnetic fields

    Full text link
    We study the mechanisms and the limits of pumping vorticity into a spinor condensate through manipulations of magnetic (B-) fields. We discover a fundamental connection between the geometrical properties of the magnetic fields and the quantized circulation of magnetically trapped atoms, a result which generalizes several recent experimental and theoretical studies. The optimal procedures are devised that are capable of continuously increasing or decreasing a condensate's vorticity by repeating certain two step B-field manipulation protocols. We carry out detailed numerical simulations that support the claim that our protocols are highly efficient, stable, and robust against small imperfections of all types. Our protocols can be implemented experimentally within current technologies.Comment: 9 pages, 6 figure

    Super coset space geometry

    Get PDF
    Super coset spaces play an important role in the formulation of supersymmetric theories. The aim of this paper is to review and discuss the geometry of super coset spaces with particular focus on the way the geometrical structures of the super coset space G/H are inherited from the super Lie group G. The isometries of the super coset space are discussed and a definition of Killing supervectors - the supervectors associated with infinitesimal isometries - is given that can be easily extended to spaces other than coset spaces.Comment: 49 pages, 1 figure, AFK previously published under the name A. F. Schunc

    Minimal and Robust Composite Two-Qubit Gates with Ising-Type Interaction

    Full text link
    We construct a minimal robust controlled-NOT gate with an Ising-type interaction by which elementary two-qubit gates are implemented. It is robust against inaccuracy of the coupling strength and the obtained quantum circuits are constructed with the minimal number (N=3) of elementary two-qubit gates and several one-qubit gates. It is noteworthy that all the robust circuits can be mapped to one-qubit circuits robust against a pulse length error. We also prove that a minimal robust SWAP gate cannot be constructed with N=3, but requires N=6 elementary two-qubit gates.Comment: 7 pages, 2 figure

    Potential formulation of the dispersion relation for a uniform, magnetized plasma with stationary ions in terms of a vector phasor

    Full text link
    The derivation of the helicon dispersion relation for a uniform plasma with stationary ions subject to a constant background magnetic field is reexamined in terms of the potential formulation of electrodynamics. Under the same conditions considered by the standard derivation, the nonlinear self-coupling between the perturbed electron flow and the potential it generates is addressed. The plane wave solution for general propagation vector is determined for all frequencies and expressed in terms of a vector phasor. The behavior of the solution as described in vacuum units depends upon the ratio of conductivity to the magnitude of the background field. Only at low conductivity and below the cyclotron frequency can significant propagation occur as determined by the ratio of skin depth to wavelength.Comment: 10 pages, 6 figures, major revision, final version, to appear in Po

    Topological Protection and Quantum Noiseless Subsystems

    Full text link
    Encoding and manipulation of quantum information by means of topological degrees of freedom provides a promising way to achieve natural fault-tolerance that is built-in at the physical level. We show that this topological approach to quantum information processing is a particular instance of the notion of computation in a noiseless quantum subsystem. The latter then provide the most general conceptual framework for stabilizing quantum information and for preserving quantum coherence in topological and geometric systems.Comment: 4 Pages LaTeX. Published versio

    A gauge theoretical view of the charge concept in Einstein gravity

    Get PDF
    We will discuss some analogies between internal gauge theories and gravity in order to better understand the charge concept in gravity. A dimensional analysis of gauge theories in general and a strict definition of elementary, monopole, and topological charges are applied to electromagnetism and to teleparallelism, a gauge theoretical formulation of Einstein gravity. As a result we inevitably find that the gravitational coupling constant has dimension â„Ź/l2\hbar/l^2, the mass parameter of a particle dimension â„Ź/l\hbar/l, and the Schwarzschild mass parameter dimension l (where l means length). These dimensions confirm the meaning of mass as elementary and as monopole charge of the translation group, respectively. In detail, we find that the Schwarzschild mass parameter is a quasi-electric monopole charge of the time translation whereas the NUT parameter is a quasi-magnetic monopole charge of the time translation as well as a topological charge. The Kerr parameter and the electric and magnetic charges are interpreted similarly. We conclude that each elementary charge of a Casimir operator of the gauge group is the source of a (quasi-electric) monopole charge of the respective Killing vector.Comment: LaTeX2e, 16 pages, 1 figure; enhanced discussio
    • …
    corecore