11,698 research outputs found

    Leading order infrared quantum chromodynamics in Coulomb gauge

    Full text link
    A truncation scheme for the Dyson-Schwinger equations of quantum chromodynamics in Coulomb gauge within the first order formalism is presented. The truncation is based on an Ansatz for the Coulomb kernel occurring in the action. Results at leading loop order and in the infrared are discussed for both the Yang-Mills and quark sectors. It is found that the resulting equations for the static gluon and quark propagators agree with those derived in a quasi-particle approximation to the canonical Hamiltonian approach. Moreover, a connection to the heavy quark limit is established. The equations are analyzed numerically and it is seen that in both the gluonic and quark sectors, a nontrivial dynamical infrared mass scale emerges.Comment: 27 pages, 11 figure

    Hidden heat transfer in equilibrium states implies directed motion in nonequilibrium states

    Full text link
    We study a class of heat engines including Feynman's ratchet, which exhibits a directed motion of a particle in nonequilibrium steady states maintained by two heat baths. We measure heat transfer from each heat bath separately, and average them using a careful procedure that reveals the nature of the heat transfer associated with directed steps of the particle. Remarkably we find that steps are associated with nonvanishing heat transfer even in equilibrium, and there is a quantitative relation between this ``hidden heat transfer'' and the directed motion of the particle. This relation is clearly understood in terms of the ``principle of heat transfer enhancement'', which is expected to apply to a large class of highly nonequilibrium systems.Comment: 4 pages, 4 figures; revise

    A heat pump at a molecular scale controlled by a mechanical force

    Full text link
    We show that a mesoscopic system such as Feynman's ratchet may operate as a heat pump, and clarify a underlying physical picture. We consider a system of a particle moving along an asymmetric periodic structure . When put into a contact with two distinct heat baths of equal temperature, the system transfers heat between two baths as the particle is dragged. We examine Onsager relation for the heat flow and the particle flow, and show that the reciprocity coefficient is a product of the characteristic heat and the diffusion constant of the particle. The characteristic heat is the heat transfer between the baths associated with a barrier-overcoming process. Because of the correlation between the heat flow and the particle flow, the system can work as a heat pump when the particle is dragged. This pump is particularly effective at molecular scales where the energy barrier is of the order of the thermal energy.Comment: 7 pages, 5 figures; revise

    Filling dependence of a new type of charge ordered liquid on a triangular lattice system

    Full text link
    We study the recently reported characteristic gapless charge ordered state in a spinless fermion system on a triangular lattice under strong inter-site Coulomb interactions. In this state the charges are spontaneously divided into solid and liquid component, and the former solid part aligns in a Wigner crystal manner while the latter moves among them like a pinball. We show that such charge ordered liquid is stable over a wide range of filling, 1/3<n<2/31/3<n<2/3, and examine its filling dependent nature.Comment: 3 pages 3 figure

    Spatial concavity of solutions to parabolic systems

    Get PDF

    Assessment of the Potential Impact and Cost-effectiveness of Self-Testing for HIV in Low-Income Countries.

    Get PDF
    Studies have demonstrated that self-testing for human immunodeficiency virus (HIV) is highly acceptable among individuals and could allow cost savings, compared with provider-delivered HIV testing and counseling (PHTC), although the longer-term population-level effects are uncertain. We evaluated the cost-effectiveness of introducing self-testing in 2015 over a 20-year time frame in a country such as Zimbabwe

    Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber system

    Get PDF
    The giant fiber system (GFS) is a simple network of neurons that mediates visually elicited escape behavior in Drosophila. The giant fiber (GF), the major component of the system, is a large, descending interneuron that relays visual stimuli to the motoneurons that innervate the tergotrochanteral jump muscle (TTM) and dorsal longitudinal flight muscles (DLMs). Mutations in the neural transcript from the shaking-B locus abolish the behavioral response by disrupting transmission at some electrical synapses in the GFS. This study focuses on the role of the gene in the development of the synaptic connections. Using an enhancer-trap line that expresses lacZ in the GFs, we show that the neurons develop during the first 30 hr of metamorphosis. Within the next 15 hr, they begin to form electrical synapses, as indicated by the transfer of intracellularly injected Lucifer yellow. The GFs dye-couple to the TTM motoneuron between 30 and 45 hr of metamorphosis, to the peripherally synapsing interneuron that drives the DLM motoneurons at approximately 48 hr, and to giant commissural interneurons in the brain at approximately 55 hr. Immunocytochemistry with shaking-B peptide antisera demonstrates that the expression of shaking-B protein in the region of GFS synapses coincides temporally with the onset of synaptogenesis; expression persists thereafter. The mutation shak-B2, which eliminates protein expression, prevents the establishment of dye coupling shaking-B, therefore, is essential for the assembly and/or maintenance of functional gap junctions at electrical synapses in the GFS

    Mapping of Large Scale 158 micron [CII] Line Emission: Orion A

    Full text link
    We present the first results of an observational programme undertaken to map the fine structure line emission of singly ionized carbon ([CII] 157.7409 micron) over extended regions using a Fabry Perot spectrometer newly installed at the focal plane of a 100cm balloon-borne far-infrared telescope. This new combination of instruments has a velocity resolution of ~200 km/s and an angular resolution of 1.5'. During the first flight, an area of 30'x15' in Orion A was mapped. The observed [CII] intensity distribution has been compared with the velocity-integrated intensity distributions of 13CO(1-0), CI(1-0) and CO(3-2) from the literature. The observed line intensities and ratios have been analyzed using the PDR models by Kaufman et al. 1999 to derive the incident UV flux and volume density at a few selected positions.Comment: To appear in Astronomy & Astrophysic
    corecore