9 research outputs found

    Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p + p interactions at the CERN Super Proton Synchrotron

    Get PDF
    Results on two-particle ΔηΔϕ correlations in inelastic p + p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the Epos and UrQMD models.ISSN:1434-6044ISSN:1434-605

    Total Neutron Cross-Section Measurement on CH with a Novel 3D-Projection Scintillator Detector

    No full text
    Long-baseline neutrino oscillation experiments rely on detailed models of neutrino interactions on nuclei. These models constitute an important source of systematic uncertainty, partially because detectors to date have been unable to detect final state neutrons. A novel three-dimensional projection scintillator tracker will be a component of the upgraded off-axis near detector of the T2K experiment. Due to the good timing resolution and fine granularity, this technology is capable of measuring neutron kinematics in neutrino interactions on an event-by-event basis and will provide valuable data for refining neutrino interaction models. A prototype is exposed to the neutron beamline at Los Alamos National Laboratory with neutron energies between 0 and 800 MeV. In order to demonstrate the capability to measure neutron kinematics, the total neutron–scintillator cross section as a function of the neutron kinetic energy is measured

    Low energy radioactivity BG model in Super-Kamiokande detector from SK-IV data

    Get PDF
    n/

    Follow-up of GWTC-2 gravitational wave events with neutrinos from the Super-Kamiokande detector

    Get PDF
    n/

    Combined Pre-Supernova Alert System with Kamland and Super-Kamiokande

    No full text
    International audiencePreceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are observed, an early warning of the upcoming core-collapse supernova can be provided. In light of this, KamLAND and Super-Kamiokande have been monitoring pre-supernova neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and Super-Kamiokande on pre-supernova neutrino detection. A pre-supernova alert system combining the KamLAND detector and the Super-Kamiokande detector is developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-supernova neutrino signal from a 15 M⊙_{\odot} star within 510 pc of the Earth, at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hours in advance
    corecore