5 research outputs found

    Molecular analysis of a variant type of familial amyloidotic polyneuropathy showing cerebellar ataxia and pyramidal tract signs

    Get PDF
    金沢大学がん研究所がん分子細胞制御A Japanese family with atypical type I familial amyloidotic polyneuropathy (FAP) in Iiyama, Japan, was studied. Most of the family members have dysfunctions of the central nervous system, in addition to typical symptoms of type I FAP. The transthyretin (TTR, also called prealbumin) gene of the atypical FAP (FAP-IY) was analyzed with recombinant DNA techniques and a RIA method. FAP-IY was found to have the mutation responsible for the methionine-for-valine substitution at position 30 of TTR, as in the case of typical type I FAP. However, analysis of DNA polymorphisms in the TTR locus showed that FAP-IY has a genetic background differing from that of the typical type I FAP. These observations lead to the consideration that a genetic factor(s) involved in the dysfunction of the central nervous system may locate in a chromosome region in close proximity to the TTR gene

    TATA-binding Protein (TBP)-like Protein Is Engaged in Etoposide-induced Apoptosis through Transcriptional Activation of Human TAp63 Gene*

    No full text
    Accumulating evidence indicates that TBP (TATA-binding protein)-like protein (TLP) contributes to the regulation of stress-mediated cell cycle checkpoint and apoptotic pathways, although its physiological target genes have remained elusive. In the present study, we have demonstrated that human TAp63 is one of the direct transcriptional target genes of TLP. Enforced expression of TLP results in the transcriptional induction of the endogenous TAp63, but not of the other p53 family members such as TAp73 and p53. Consistent with these results, small interference RNA-mediated knockdown led to a significant down-regulation of the endogenous TAp63. Luciferase reporter assay and chromatin immunoprecipitation analysis revealed that the genomic region located at positions −487 to −29, where +1 represents the transcriptional initiation site of TAp63, is required for TLP-dependent transcriptional activation of TAp63 and also TLP is efficiently recruited onto this region. Additionally, cells treated with anti-cancer drug etoposide underwent apoptosis in association with the transcriptional enhancement of TAp63 in a p53-independent manner, and the knockdown of the endogenous TLP reduced etoposide-induced apoptosis through repression of TAp63 expression. Taken together, our present study identifies a TLP-TAp63 pathway that is further implicated in stress-induced apoptosis

    Plant size, latitude, and phylogeny explain within-population variability in herbivory

    No full text
    Interactions between plants and herbivores are central in most ecosystems, but their strength is highly variable. The amount of variability within a system is thought to influence most aspects of plant-herbivore biology, from ecological stability to plant defense evolution. Our understanding of what influences variability, however, is limited by sparse data. We collected standardized surveys of herbivory for 503 plant species at 790 sites across 116° of latitude. With these data, we show that within-population variability in herbivory increases with latitude, decreases with plant size, and is phylogenetically structured. Differences in the magnitude of variability are thus central to how plant-herbivore biology varies across macroscale gradients. We argue that increased focus on interaction variability will advance understanding of patterns of life on Earth
    corecore