10 research outputs found
Estradiol Modulates Membrane-Linked ATPases, Antioxidant Enzymes, Membrane Fluidity, Lipid Peroxidation, and Lipofuscin in Aged Rat Liver
Free radical production and oxidative stress are known to increase in liver during aging, and may contribute to the oxidative damage. These changes increase during menopausal condition in females when the level of estradiol is decreased. The objective of this study was to observe the changes in activities of membrane linked ATPases (Na+K+ ATPase, Ca2+ ATPase), antioxidant enzymes (superoxide dismutase, glutathione-S-transferase), lipid peroxidation levels, lipofuscin content and membrane fluidity occurring in livers of female rats of 3, 12 and 24 months age groups, and to see whether these changes are restored to 3 months control levels rats after exogenous administration of 17-β-estradiol (E2). The aged rats (12 and 24 months) were given subcutaneous injection of E2 (0.1 μg/g body weight) daily for one month. The results obtained in the present work revealed that normal aging was associated with significant decrease in the activities of membrane linked ATPases, antioxidant enzymes, membrane fluidity and an increase in lipid peroxidation and lipofuscin content in livers of aging female rats. The present study showed that E2 treatment reversed the changes to normal levels. E2 treatment may be beneficial in preventing some of the age related changes in the liver by increasing antioxidant defenses
Modulation of some gluconeogenic enzyme activities in diabetic rat liver and kidney: Effect of antidiabetic compounds
196-199The effects of
insulin, sodium orthovanadate and a hypoglycemic plant material, Trigonella foenum
graecum (fenugreek) seed powder were studied on the activities of
glucose-6-phosphatase and fructose-1,6-bisphosphatase in diabetic liver and kidney.
The significantly increased activities of the two enzymes during diabetes
in liver and kidney were found to be lowered to almost control
values by
the use of the antidiabetic compounds. Diabetic liver exhibited a much greater increase
in the activities of the two enzymes than diabetic kidney. The highest percentage
of reversal to normal values was seen using the combination of vanadate and Trigonella
seed powder. The lowered rate of growth of the animals as well as the
increased blood sugar were reversed almost to the control levels by the Trigonella
seed powder and vanadate treatment. The inclusion of the Trigonella seed
powder overcame the toxicity of vanadium
encountered
when it was given alone as insulin mimetic agent. Much lower levels of vanadate
were needed when it was given in combination with Trigonella seed powder.
Their combined effects were better at restoring the above parameters than those
induced by insulin administration
Antidiabetic and Neuroprotective Effects of Trigonella Foenum-graecum Seed Powder in Diabetic Rat Brain
Trigonella foenum-graecum seed powder (TSP) has been reported to have hypoglycemic and hyperinsulinemic action. The objective of the study was to examine the antidiabetic and neuroprotective role of TSP in hyperglycemiainduced alterations in blood glucose, insulin levels and activities of membrane linked enzymes (Na+K+ATPase, Ca2+ATPase), antioxidant enzymes (superoxide dismutase, glutathione S-transferase), calcium (Ca2+) levels, lipid peroxidation, membrane fluidity and neurolipofuscin accumulation in the diabetic rat brain. Female Wistar rats weighing between 180 and 220 g were made diabetic by a single injection of alloxan monohydrate (15 mg/100 g body weight), diabetic rats were given 2 IU insulin, per day with 5% TSP in the diet for three weeks. A significant increase in lipid peroxidation was observed in diabetic brain. The increased lipid peroxidation following chronic hyperglycemia was accompanied with a significant increase in the neurolipofuscin deposition and Ca2+ levels with decreased activities of membrane linked ATPases and antioxidant enzymes in diabetic brain. A decrease in synaptosomal membrane fluidity may influence the activity of membrane linked enzymes in diabetes. The present study showed that TSP treatment can reverse the hyperglycemia induced changes to normal levels in diabetic rat brain. TSP administration amended effect of hyperglycemia on alterations in lipid peroxidation, restoring membrane fluidity, activities of membrane bound and antioxidant enzymes, thereby ameliorating the diabetic complications
Sodium Orthovanadate and Trigonella Foenum Graecum Prevents Neuronal Parameters Decline and Impaired Glucose Homeostasis in Alloxan Diabetic Rats
Hyperglycemia is the most important contributor in the onset and progress of diabetic complications mainly by producing oxidative stress. The present study was carried out to observe, the antihyperglycemic effect of sodium orthovanadate (SOV) and Trigonella foenum graecum seed powder (TSP) administration on blood glucose and insulin levels, membrane linked enzymes (monoamine oxidase, acetylcholinesterase, Ca2+ATPase), intracellular calcium (Ca2+) levels, lipid peroxidation, membrane fluidity and neurolipofuscin accumulation in brain of the alloxan induced diabetic rats and to see whether the treatment with SOV and TSP was capable of reversing the diabetic effects. Diabetes was induced by administration of alloxan monohydrate (15 mg/100 g body weight) and rats were treated with 2 IU insulin, 0.6 mg/ml SOV, 5% TSP in the diet and a combination of 0.2 mg/ml SOV and 5% TSP separately for three weeks. Diabetic rats showed hyperglycemia with almost four fold high blood glucose levels. Activities of acetylcholinesterase and Ca2+ATPase decreased in diabetic rat brain. Diabetic rats exhibited an increased level of intracellular Ca2+ levels, lipid peroxidation, neurolipofuscin accumulations and monoamine oxidase activity. Treatment of diabetic rats with insulin, TSP, SOV and a combined therapy of lower dose of SOV with TSP revived normoglycemia and restored the altered level of membrane bound enzymes, lipid peroxidation and neurolipofuscin accumulation. Our results showed that lower doses of SOV (0.2 mg/ml) could be used in combination with TSP in normalization of altered metabolic parameters and membrane linked enzymes without any harmful side effect
Age-related changes in membrane fluidity and fluorescence intensity by tachykinin neuropeptide NKB and Aβ (25-35) with 17β estradiol in female rat brain
Changes in the fluidity of membrane lipids are known to occur during aging and by lipid peroxidation. It is well documented that the fluidity state of the lipid phase in a membrane is important for the activity of intrinsic membrane proteins. Oxidants and fluidity of membrane lipids play a significant role in aging and age related neurodegenerative diseases. The aim of the present study was to determine the effect of tachykinin neuropeptide, Neurokinin B (NKB) and Amyloid beta fragment Aβ (25-35) on 17β estradiol (E2) treated aging female rat synaptosomes of different age groups. Aging brain functions were measured by membrane fluidity and fluorescent intensity with neuropeptides. An in-vitro incubation of Aβ (25-35) in E2 treated brain synaptosomes showed toxic effects on all the parameters. These effects of aging and Aβ (25–35) on membrane fluidity were restored by NKB and combined NKB and Aβ (25–35) with E2. Furthermore, we measured the Tryptophan (Trp) fluorescence to monitor changes in proteins and to make inferences regarding structure and dynamics. Trp is a sensitive marker of protein oxidation and its fluorescence significantly increased in E2 treated synaptosomes of aging rats. Furthermore, to evaluate the effect of oxidative stress on the membrane and protein conformation, fluorescent probe 1-Anilino-8-Naphthalenesulfonate (ANS) were used. An increase in ANS fluorescence in E2 treated synaptosomes of aging rats indicated that E2 is associated with significant conformational changes and surface hydrophobicity of membranes and proteins.</p
Effect of 17β estradiol on hippocampus region of aging female rat brain: Ultrastructural study
Estradiol has direct membrane-mediated effects on neurons and its effects are both neuroprotective and neurotrophic. This hormone modulates brain development and aging and affects neurochemical systems which are affected in age-related cognitive decline, AD and other neuropsychiatric disorders. The aim of the present study was to determine the effect of 17β estradiol (E2) in hippocampus region of different age groups of rats. The changes in the hippocampus region of female rat brain of different age groups with and without E2 treatment were observed by transmission electron microscopy. Age dependent changes in myelin sheath, axon and cytoplasm membrane were observed with aging in control group rat brain but the E2 treated rats showed significantly stable myelin sheath, myelin axon and cytoplasm structure. Our results showed that E2 treatment significantly effects hippocampus brain region of aging rats. These analyses revealed that fundamental age-related changes in brain and estrogen have important implications when estrogen levels and hippocampus dependent functions decline.</p