32 research outputs found
Chemical composition of the brown alga Padina pavonia (L.) Gaill. from the adriatic sea
The chemical composition of the brown alga Padina pavonia (L.) Gaill. from the southern Adriatic Sea was investigated. Twelve sterols were identified in the sterol fraction, the main ones being cholesterol and fucosterol. The main fatty acids in the lipids were also identified.The most abundant fatty acid was palmitic acid, followed by oleic and myristic acids.The concentration of polyunsaturated fatty acids was unusually low for a marine alga. By GC/MS analysis of the volatile and polar fractions, 40 compounds were identified. Some of them probably possess defensive functions. In the volatile fraction free fatty acids, aromatic esters, benzyl alcohol and benzaldehyde predominated. Low concentrations of terpenoids, phenols and sulfur containing compounds were also identified.The nbutanol extract contained mainly fatty acids and polyols. Some of the extracts had an antibacterial activity
Antibacterial mono- and sesquiterpene esters of benzoic acids from Iranian propolis
<p>Abstract</p> <p>Background</p> <p>Propolis (bee glue) has been used as a remedy since ancient times. Propolis from unexplored regions attracts the attention of scientists in the search for new bioactive molecules.</p> <p>Results</p> <p>From Iranian propolis from the Isfahan province, five individual components were isolated: the prenylated coumarin suberosin <b>1</b>, and four terpene esters: tschimgin (bornyl <it>p</it>-hydroxybenzoate) <b>2</b>, tschimganin (bornyl vanillate) <b>3</b>, ferutinin (ferutinol <it>p</it>-hydroxybenzoate) <b>4, </b>and tefernin (ferutinol vanillate) <b>5</b>. All of them were found for the first time in propolis. Compounds <b>2 </b>- <b>5 </b>demonstrated activity against <it>Staphylococcus aureus</it>.</p> <p>Conclusions</p> <p>The results of the present study are consistent with the idea that propolis from unexplored regions is a promising source of biologically active compounds.</p
Proper expression of the O-antigen of lipopolysaccharide is essential for the virulence of Yersinia enterocolitica O:8 in experimental oral infection of rabbits
Abstract The O-antigen of lipopolysaccharide (LPS) is required for virulence in Yersinia enterocolitica serotype O:8. Here we evaluated the importance of controlling the O-antigen biosynthesis using an in vivo rabbit model of infection. Y. enterocolitica O:8 wild-type strain was compared to three mutants differing in the O-antigen phenotype: (i) the rough strain completely devoid of the O-antigen, (ii) the wzy strain that lacks the O-antigen polymerase (Wzy protein) and expresses LPS with only one repeat unit, and (iii) the wzz strain that lacks the O-antigen chain length determinant (Wzz protein) and expresses LPS without modal distribution of O-antigen chain lengths. The most attenuated strain was the wzz mutant. The wzz bacteria were cleared from the tissues by day 30, the blood parameters were least dramatic and histologically only immunomorphological findings were seen. The level of attenuation of the rough and the wzy strain bacteria was between the wild-type and the wzz strain. Wild-type bacteria were highly resistant to killing by polymorphonuclear leukocytes, the wzz strain bacteria were most sensitive and the rough and wzy strain bacteria were intermediate resistant. These results clearly demonstrated that the presence of O-antigen on the bacterial surface is not alone sufficient for full virulence, but also there is a requirement for its controlled chain length
Isolation of <i>Mycobacterium avium</i> subsp. <i>paratuberculosis</i> from mouflon in Bulgaria
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of paratuberculosis (John’s disease) mainly in large and small domestic and wild ruminants, and suspected causative agent in human Crohn’s disease. In Bulgaria, paratuberculosis is still poorly researched in both groups of ruminants. We present results of the first in-depth study of mouflon, grown free in one hunting reserve in the Western region of the country. The aim was to prove the presence of MAP in diagnostic materials from regularly hunted or dead mouflon suspected for paratuberculosis. Small intestine and mesenteric lymph nodes (MLN) from 12 hunted and 4 dead mouflon and 10 faecal samples (Fc) were studied in the period of 2009–2013. Typical for paratuberculosis pathomorphological lesions were observed in four mouflon (of 16 examined). The intestinal wall was thickened, strongly folded and soft, with severe hyperemia. The MLN were enlarged, soft, with marbled appearance. The affected section of the ileum showed hyperplasia of the mucous corion and submucosa with diffuse infiltration of epithelioid cells. Lymphadenopathy with atrophy of T and B lymphocytes areas was observed in the mesenteric lymph nodes. For bacteriological isolation of MAP, the tissue and faecal samples were decontaminated with NALC-NaOH, cultured in Middlebrook 7H9 Broth and on Herrold’s medium. The Ziehl–Neelsen stained smears and isolates were examined microscopically for acid-fast bacteria. Presence of MAP was observed in tissue samples of 4 (25%) mouflon and in 2 (20%) faecal samples. The same samples were confirmed by the IS900 PCR for the presence of specific for MAP fragments with a commercial amplification kit. The cases of paratuberculosis found at different times in the free-living mouflon in our study prove that the disease exists in Bulgaria and highlight the need for more serious control of the disease among wild and domestic ruminants
Different enteropathogenic Yersinia strains found in wild boars and domestic pigs
Yersinia enterocolitica and Yersinia pseudotuberculosis strains isolated from wild boars and fattening pigs were characterized and compared with each other. In wild boars, ail-positive Y. enterocolitica strains belonged to bioserotypes 4/O:3 (36%, 5/14), 2/O:9 (29%, 4/14), and 2/O:5,27 (21%, 3/14). Additionally, two ail-positive strains were untypable. Among fattening pigs, the bioserotype 4/O:3 was dominating (91%, 71/78), and bioserotypes 2/O:5,27 (8%, 6/78) and 2/O:9 (1%, 1/78) were rare. inv-positive Y. pseudotuberculosis strains of serotypes O:1 and O:2 were isolated only from wild boars. Antimicrobial resistance patterns between wild boar and fattening pig strains differed. Most of the ail-positive Y. enterocolitica strains carried yst, hreP, and virF genes. Several genotypes of Y. enterocolitica strains were obtained by PFGE using NotI, ApaI, XhoI, and SpeI enzymes. All genotypes of wild boar strains differed from fattening pig strains. Especially strains of bioserotype 4/O:3 were clearly different with all four enzymes. These results show that wild boar strains differed from domestic pig strains. More wild boar strains should be isolated to show that wild boars and domestic pigs are reservoirs for different Y. enterocolitica and Y. pseudotuberculosis strains