2 research outputs found

    Video1_Biplanar quadrature coil for versatile low-field extremity MRI.MP4

    No full text
    Biplanar magnets offer extended flexibility in MRI, particularly appealing due to unmatched accessibility to the patient. At low field strength (1 field in each element were performed before the quadrature coil was built and used at ∼ 0.1 T (4.33 MHz). Once assembled, the best performance in our setup was achieved in undermatched conditions in place of conventional 50-Ω matching. Phantom images display the extended coverage of the quadrature coil, with similar SNR from each individual biplanar coil. The combined images show an expected SNR gain of 2 that confirms good decoupling between the two channels (−36 dB). To the best of our knowledge, the proposed coil represents the first implementation of a biplanar geometry at low field and the first quadrature detection for a biplanar design. The open design and overall good sensitivity of our biplanar design enabled fast and quasi-isotropic 3D imaging with (1.6 × 1.6 × 2.2) mm3 resolution in vivo in human extremities.</p

    Video2_Biplanar quadrature coil for versatile low-field extremity MRI.MP4

    No full text
    Biplanar magnets offer extended flexibility in MRI, particularly appealing due to unmatched accessibility to the patient. At low field strength (1 field in each element were performed before the quadrature coil was built and used at ∼ 0.1 T (4.33 MHz). Once assembled, the best performance in our setup was achieved in undermatched conditions in place of conventional 50-Ω matching. Phantom images display the extended coverage of the quadrature coil, with similar SNR from each individual biplanar coil. The combined images show an expected SNR gain of 2 that confirms good decoupling between the two channels (−36 dB). To the best of our knowledge, the proposed coil represents the first implementation of a biplanar geometry at low field and the first quadrature detection for a biplanar design. The open design and overall good sensitivity of our biplanar design enabled fast and quasi-isotropic 3D imaging with (1.6 × 1.6 × 2.2) mm3 resolution in vivo in human extremities.</p
    corecore