369 research outputs found

    Radial Velocities of Stars in the Galactic Center

    Get PDF
    We present results from K band slit scan observations of a ~20''x20'' region of the Galactic center (GC) in two separate epochs more than five years apart. The high resolution (R>=14,000) observations allow the most accurate radial velocity and acceleration measurements of the stars in the central parsec of the Galaxy. Detected stars can be divided into three groups based on the CO absorption band heads at ~2.2935 microns and the He I lines at ~2.0581 microns and ~2.112, 2.113 microns: cool, narrow-line hot and broad-line hot. The radial velocities of the cool, late-type stars have approximately a symmetrical distribution with its center at ~-7.8(+/-10.3) km/s and a standard deviation ~113.7(+/-10.3) km/s. Although our statistics are dominated by the brightest stars, we estimate a central black hole mass of 3.9(+/-1.1) million solar masses, consistent with current estimates from complete orbits of individual stars. Our surface density profile and the velocity dispersion of the late type stars support the existence of a low density region at the Galactic center suggested by earlier observations. Many hot, early-type stars show radial velocity changes higher than maximum values allowed by pure circular orbital motions around a central massive object, suggesting that the motions of these stars greatly deviate from circular orbital motions around the Galactic center. The correlation between the radial velocities of the early type He I stars and their declination offsets from Sagittarius A* suggests that a systematic rotation is present for the early-type population. No figure rotation around the Galactic center for the late type stars is supported by the new observations.Comment: 61 pages, 18 figures, 7 tables; accepted for publication in Astrophysical Journa

    A Second Luminous Blue Variable in the Quintuplet Cluster

    Get PDF
    H and K band moderate resolution and 4 μ\mum high resolution spectra have been obtained for FMM#362, a bright star in the Quintuplet Cluster near the Galactic Center. The spectral features in these bands closely match those of the Pistol Star, a luminous blue variable and one of the most luminous stars known. The new spectra and previously-obtained photometry imply a very high luminosity for FMM#362, L 106\geq 10^6 \Lsun, and a temperature of 10,000 - 13,000 K. Based on its luminosity, temperature, photometric variability, and similarities to the Pistol Star, we conclude that FMM#362 is a luminous blue variable.Comment: Accepted for publication in The Astrophysical Journal Letters, 4 PostScript figures, 2 table

    The Arches cluster revisited: I. Data presentation and stellar census

    Get PDF
    Context. Located within the central region of the Galaxy, the Arches cluster appears to be one of the youngest, densest and most massive stellar aggregates within the Milky Way. As such it has the potential to be a uniquely instructive laboratory for the study of star formation in extreme environments and the physics of very massive stars. Aims. To realise this possibility, the fundamental physical properties of both cluster and constituent stars need to be robustly determined; tasks we attempt here. Methods. In order to accomplish these goals we provide and analyse new multi-epoch near-IR spectroscopic data obtained with the VLT/SINFONI and photometry from the HST/WFC3. We are able to stack multiple epochs of spectroscopy for individual stars in order to obtain the deepest view of the cluster members ever obtained. Results. We present spectral classifications for 88 cluster members, all of which are WNLh or O stars: a factor of three increase over previous studies. We find no further examples of Wolf-Rayet stars within the cluster; importantly no H-free examples were identified. The smooth and continuous progression in spectral morphologies from O super-/hypergiants through to the WNLh cohort implies a direct evolutionary connection. We identify candidate giant and main sequence O stars spectroscopically for the first time. No products of binary evolution may be unambiguously identified despite the presence of massive binaries within the Arches. Conclusions. Notwithstanding difficulties imposed by the highly uncertain (differential) reddening to the Arches, we infer a main sequence/luminosity class V turn-off mass of ∼ 30 − 38M⊙ via the distribution of spectral types. Analysis of the eclipsing binary F2 suggests current masses of ∼ 80M⊙ and ∼ 60M⊙ for the WNLh and O hypergiant cohorts, respectively; we conclude that all classified stars have masses > 20M⊙. An age of ∼ 2.0 − 3.3Myr is suggested by the turn-off between ∼O4-5 V; constraints imposed by the supergiant population and the lack of H-free WRs are consistent with this estimate. While the absence of highly evolved WC stars strongly argues against the prior occurrence of SNe within the Arches, the derived age does accommodate such events for exceptionally massive stars. Further progress will require quantitative analysis of multiple individual cluster members in addition to further spectroscopic observations to better constrain the binary and main sequence populations; nevertheless it is abundantly clear that the Arches offers an unprecedented insight into the formation, evolution and death of the most massive stars Nature allows to form

    The Arches Cluster Mass Function

    Get PDF
    We have analyzed H and K_s-band images of the Arches cluster obtained using the NIRC2 instrument on Keck with the laser guide star adaptive optics (LGS AO) system. With the help of the LGS AO system, we were able to obtain the deepest ever photometry for this cluster and its neighborhood, and derive the background-subtracted present-day mass function (PDMF) down to 1.3 Msun for the 5 arcsec-9 arcsec annulus of the cluster. We find that the previously reported turnover at 6 Msun is simply due to a local bump in the mass function (MF), and that the MF continues to increase down to our 50 % completeness limit (1.3 Msun) with a power-law exponent of Gamma = -0.91 for the mass range of 1.3 < M/Msun < 50. Our numerical calculations for the evolution of the Arches cluster show that the Gamma values for our annulus increase by 0.1-0.2 during the lifetime of the cluster, and thus suggest that the Arches cluster initially had Gamma of -1.0 ~ -1.1, which is only slightly shallower than the Salpeter value.Comment: Accepted for publication in ApJ

    A Medium Resolution Near-Infrared Spectral Atlas of O and Early B Stars

    Full text link
    We present intermediate resolution (R ~ 8,000 - 12,000) high signal-to-noise H- and K-band spectroscopy of a sample of 37 optically visible stars, ranging in spectral type from O3 to B3 and representing most luminosity classes. Spectra of this quality can be used to constrain the temperature, luminosity and general wind properties of OB stars, when used in conjunction with sophisticated atmospheric model codes. Most important is the need for moderately high resolutions (R > 5000) and very high signal-to-noise (S/N > 150) spectra for a meaningful profile analysis. When using near-infrared spectra for a classification system, moderately high signal-to-noise (S/N ~ 100) is still required, though the resolution can be relaxed to just a thousand or two. In the appendix we provide a set of very high quality near-infrared spectra of Brackett lines in six early-A dwarfs. These can be used to aid in the modeling and removal of such lines when early-A dwarfs are used for telluric spectroscopic standards.Comment: 12 pages, 3 tables, 14 figures. AASTex preprint style. To appear in ApJS, November 2005. All spectra are available by contacting M.M. Hanso

    A VLT/FLAMES survey for massive binaries in Westerlund 1 IV. Wd1-5 – binary product and a pre-supernova companion for the magnetar CXOU J1647-45?

    Get PDF
    Context. The first soft gamma-ray repeater was discovered over three decades ago, and was subsequently identified as a magnetar, a class of highly magnetised neutron star. It has been hypothesised that these stars power some of the brightest supernovae known, and that they may form the central engines of some long duration gamma-ray bursts. However there is currently no consenus on the formation channel(s) of these objects.Aims. The presence of a magnetar in the starburst cluster Westerlund 1 implies a progenitor with a mass ≥40 M⊙, which favours its formation in a binary that was disrupted at supernova. To test this hypothesis we conducted a search for the putative pre-SN companion.Methods. This was accomplished via a radial velocity survey to identify high-velocity runaways, with subsequent non-LTE model atmosphere analysis of the resultant candidate, Wd1-5.Results. Wd1-5 closely resembles the primaries in the short-period binaries, Wd1-13 and 44, suggesting a similar evolutionary history, although it currently appears single. It is overluminous for its spectroscopic mass and we find evidence of He- and N-enrichement, O-depletion, and critically C-enrichment, a combination of properties that is difficult to explain under single star evolutionary paradigms. We infer a pre-SN history for Wd1-5 which supposes an initial close binary comprising two stars of comparable (~ 41 M⊙ + 35 M⊙) masses. Efficient mass transfer from the initially more massive component leads to the mass-gainer evolving more rapidly, initiating luminous blue variable/common envelope evolution. Reverse, wind-driven mass transfer during its subsequent WC Wolf-Rayet phase leads to the carbon pollution of Wd1-5, before a type Ibc supernova disrupts the binary system. Under the assumption of a physical association between Wd1-5 and J1647-45, the secondary is identified as the magnetar progenitor; its common envelope evolutionary phase prevents spin-down of its core prior to SN and the seed magnetic field for the magnetar forms either in this phase or during the earlier episode of mass transfer in which it was spun-up.Conclusions. Our results suggest that binarity is a key ingredient in the formation of at least a subset of magnetars by preventing spin-down via core-coupling and potentially generating a seed magnetic field. The apparent formation of a magnetar in a Type Ibc supernova is consistent with recent suggestions that superluminous Type Ibc supernovae are powered by the rapid spin-down of these objects
    corecore