18 research outputs found

    Elastic fiber assembly is disrupted by excessive accumulation of chondroitin sulfate in the human dermal fibrotic disease, keloid

    Get PDF
    Keloid is a fibrotic disease characterized by abnormal accumulation of extracellular matrix in the dermis. The keloid matrix contains excess collagen and glycosaminoglycans (GAGs), but lacks elastic fiber. However, the roles of these matrix components in the pathogenesis of keloid are largely unknown. Here, we show that elastin and DANCE (also known as fibulin-5), a protein required for elastic fiber formation, are not deposited in the extracellular matrix of keloids, due to excess accumulation of chondoitin sulfate (CS), although the expression of elastin and DANCE is not affected. Amount of CS accumulated in the keloid legion was 6.9-fold higher than in normal skin. Fibrillin-1, a scaffold protein for elastic fiber assembly, was abnormally distributed in the keloid matrix. Addition of purified CS to keloid fibroblast culture resulted in abnormal deposition of fibrillin-1, concomitant with significantly decreased accumulation of elastin and DANCE in the extracellular matrix. We propose that CS plays a crucial role in the development of keloid lesions through inhibition of elastic fiber assembly

    An Ex Vivo Model Employing Keloid-Derived Cell–Seeded Collagen Sponges for Therapy Development

    Get PDF
    The most distinctive feature of keloid is the extreme deposition of extracellular matrix, including collagens and proteoglycans (PGs). The focus of this study was the PG versican, which presumably defines keloid volume because of its ability to retain large amounts of water through its component glycosaminoglycans (GAGs). The excessive deposition of versican in keloids was examined by immunohistochemical analysis and by upregulation of the versican gene in these lesions by real-time PCR. The latter showed that mesenchymal cells derived from keloid lesion (KL) cells continue to exhibit above-normal versican production in culture. To establish a model of GAG deposition in keloids, collagen sponges seeded with KL cells (KL-SPos) were implanted in the subcutaneous space of nude mice. After 1 month, the KL-SPos were significantly heavier than the fibroblast (Fb)-seeded sponges (Fb-SPos). This ex vivo model was subsequently used to examine an inhibitory ability of IL-1β that was identified to reduce versican in vitro. IL-1β or chondroitinase ABC, when injected directly, successfully reduced the weight of the KL-SPos. Thus, on the basis of the change in weight of the seeded sponges, this ex vivo model can be used to test therapies aimed at reducing or inhibiting keloid formation and to study the pathogenesis of this aberrant response

    TDP-43 regulates cholesterol biosynthesis by inhibiting sterol regulatory element-binding protein 2

    Get PDF
    Dyslipidemia is considered an essential component of the pathological process of amyotrophic lateral sclerosis (ALS), a fatal motor neuron disease. Although TAR DNA Binding Protein 43 kDa (TDP-43) links both familial and sporadic forms of ALS and cytoplasmic aggregates are a hallmark of most cases of ALS, the molecular mechanism and the in vivo relation of ALS dyslipidemia with TDP-43 have been unclear. To analyze the dyslipidemia-related gene expression by TDP-43, we performed expression microarray and RNA deep sequencing (RNA-Seq) using cell lines expressing high levels of TDP-43 and identified 434 significantly altered genes including sterol regulatory element-binding protein 2 (SREBP2), a master regulator of cholesterol homeostasis and its downstream genes. Elevated TDP-43 impaired SREBP2 transcriptional activity, leading to inhibition of cholesterol biosynthesis. The amount of cholesterol was significantly decreased in the spinal cords of TDP-43-overexpressed ALS model mice and in the cerebrospinal fluids of ALS patients. These results suggested that TDP-43 could play an essential role in cholesterol biosynthesis in relation to ALS dyslipidemia

    MiR-33a is a therapeutic target in SPG4-related hereditary spastic paraplegia human neurons

    Get PDF
    Recent reports, including ours, have indicated that microRNA (miR)-33 located within the intron of sterol regulatory element binding protein (SREBP) 2 controls cholesterol homeostasis and can be a potential therapeutic target for the treatment of atherosclerosis. Here, we show that SPAST, which encodes a microtubule-severing protein called SPASTIN, was a novel target gene of miR-33 in human. Actually, the miR-33 binding site in the SPAST 3′-UTR is conserved not in mice but in mid to large mammals, and it is impossible to clarify the role of miR-33 on SPAST in mice. We demonstrated that inhibition of miR-33a, a major form of miR-33 in human neurons, via locked nucleic acid (LNA)-anti-miR ameliorated the pathological phenotype in hereditary spastic paraplegia (HSP)-SPG4 patient induced pluripotent stem cell (iPSC)-derived cortical neurons. Thus, miR-33a can be a potential therapeutic target for the treatment of HSP-SPG4

    Effectiveness of Metoclopramide, Domperidone and Ondansetron as Anti-emetics in the Amphibian, Xenopus laevis

    No full text
    Volume: 11Start Page: 381End Page: 38

    Regeneration of elastic fibers by three-dimensional culture on a collagen scaffold and the addition of latent TGF-β binding protein 4 to improve elastic matrix deposition.

    Get PDF
    The objective of this study was to investigate the effects of latent TGF-β binding protein 4 (LTBP-4) on elastic fiber regeneration in three-dimensional cultures of human dermal fibroblasts (HDFs). Appropriate collagen scaffold for elastic fiber regeneration was also examined. Collagen sponges cross-linked at 120 °C and composed of small pores (25 μm on average) was favorable for elastic fiber regeneration by HDFs. Addition of LTBP-4, followed by culture for 21 days, accelerated elastic fiber accumulation within the scaffolds. Conditioned scaffolds containing either HDFs or LTBP-4-built mature elastic fibers were implanted between the dermis and the cutaneous muscle of mice. The combined use of HDFs and LTBP-4 resulted in thicker tissues containing elastic fibers. These results indicate that weakly cross-linked collagen sponges can be used as scaffolds for regenerating elastic fibers both in vitro and in vivo, and that the addition of LTBP-4 accelerates the deposition of both elastin and fibrillin-1, and increases cell proliferation. These techniques may be useful for generating cutaneous or cardiovascular tissue equivalents; furthermore, they may serve as a useful method for the three-dimensional analyses of drugs used to treat skin diseases or to examine the microstructure of elastin networks

    HtrA1 Is Specifically Up-Regulated in Active Keloid Lesions and Stimulates Keloid Development

    Get PDF
    Keloids occur after failure of the wound healing process; inflammation persists, and various treatments are ineffective. Keloid pathogenesis is still unclear. We have previously analysed the gene expression profiles in keloid tissue and found that HtrA1 was markedly up-regulated in the keloid lesions. HtrA1 is a serine protease suggested to play a role in the pathogenesis of various diseases, including age-related macular degeneration and osteoarthritis, by modulating extracellular matrix or cell surface proteins. We analysed HtrA1 localization and its role in keloid pathogenesis. Thirty keloid patients and twelve unrelated patients were enrolled for in situ hybridization, immunohistochemical, western blot, and cell proliferation analyses. Fibroblast-like cells expressed more HtrA1 in active keloid lesions than in surrounding lesions. The proportion of HtrA1-positive cells in keloids was significantly higher than that in normal skin, and HtrA1 protein was up-regulated relative to normal skin. Silencing HtrA1 gene expression significantly suppressed cell proliferation. HtrA1 was highly expressed in keloid tissues, and the suppression of the HtrA1 gene inhibited the proliferation of keloid-derived fibroblasts. HtrA1 may promote keloid development by accelerating cell proliferation and remodelling keloid-specific extracellular matrix or cell surface molecules. HtrA1 is suggested to have an important role in keloid pathogenesis
    corecore