8 research outputs found

    A flexible bearing plate based on steel plate and rubber mat

    Get PDF
    The bearing plates used in plate load test for highway engineering are typically rigid. However, due to limitations in obtaining the accurate distribution of compressive stress at the bottom of the bearing plate, there is often a significant deviation between the measured subgrade resilient modulus and the actual condition. To address this issue, a flexible bearing plate can be used to test the subgrade and obtain a more accurate resilient modulus. In this study, we use variance and degree of mean deviation to quantitatively evaluate the distribution uniformity of compressive stress. To create a rigid-flexible bearing plate that is similar to a flexible bearing plate, we explore the combinatorial design of steel plates and rubber mats. We examine factors such as the thickness (10, 20, and 30 mm) of the steel plate, elastic modulus (5, 10, and 20 MPa) and thickness (10, 20, and 30 mm) of the rubber mat, friction coefficient (μ:0, 0,2, 0.4, 0.6, 0.8, ∞) between the bearing plate and subgrade, and the combined shape characteristics of the rubber mat and steel plate. To reduce friction between the rubber mat and subgrade, we use lubricant, and through our design process, we develop a flexible bearing plate with relatively uniform compressive stress. Our computations show that when μ = 0.05, the variance is 0.0001, and the degree of mean deviation is 0.0780. These results indicate that the distribution uniformity of the compressive stress is very close to the uniform distribution load, which meets the necessary accuracy requirements for engineering applications

    The Application of Fractional Derivative Viscoelastic Models in the Finite Element Method: Taking Several Common Models as Examples

    No full text
    This paper aims to incorporate the fractional derivative viscoelastic model into a finite element analysis. Firstly, based on the constitutive equation of the fractional derivative three-parameter solid model (FTS), the constitutive equation is discretized by using the Grünwald–Letnikov definition of the fractional derivative, and the stress increment and strain increment relationship and Jacobian matrix are obtained by using the difference method. Subsequently, we degrade the model to establish stress increment and strain increment relationships and Jacobian matrices for the fractional derivative Kelvin model (FK) and fractional derivative Maxwell model (FM). Finally, we further degrade the fractional derivative viscoelastic model to derive stress increment and strain increment relationships and Jacobian matrices for a three-component solid model and Kelvin and Maxwell models. Based on these developments, a UMAT subroutine is implemented in ABAQUS 6.14 finite element software. Three different loading modes, including static load, dynamic load, and mobile load, are analyzed and calculated. The calculations primarily involve a convergence analysis, verification of numerical solutions, and comparative analysis of responses among different viscoelastic models

    Experimental Study on Dynamic Modulus of High Content Rubber Asphalt Mixture

    No full text
    Currently, the research on the mechanical properties of rubber-modified asphalt mixtures primarily focuses on small-scale investigations, with insufficient exploration into the performance of rubber particles and their relationship with the mechanism and properties of modified asphalt mixtures. Limited studies have been conducted on large-scale rubber modification in asphalt mixtures. Due to frequent use and subsequent high damage to existing asphalt pavements, incorporating rubber-modified asphalt mixtures can partially alleviate premature deterioration. Dynamic modulus tests were conducted using MTS equipment under unconfined conditions to investigate the viscoelastic behavior of rubber-modified asphalt mixtures with high rubber content and elucidate the influence of rubber particle content on the elastic deformation and recovery capability. The dynamic mechanical properties of the mixtures were determined at different loading rates, temperatures, and types of rubber-modified asphalt mixtures. Based on the test data, variations in the dynamic modulus, phase angle, storage modulus, loss modulus, loss factor, and rut factor of the rubber-modified asphalt mixtures under different loading frequencies, temperatures, and types were analyzed. The results demonstrate the pronounced viscoelastic behavior of rubber-modified asphalt mixtures. The mixtures exhibit enhanced elasticity at low temperatures and high frequencies, while their viscosity becomes more prominent at high temperatures and low frequencies. Under constant test temperatures, an increase in load loading frequency leads to a higher dynamic modulus; conversely, a decrease in dynamic modulus is observed with increasing test temperatures. The dynamic modulus of ARHM-25 at a frequency of 10 Hz is found to be 12.99 times higher at 15 °C compared to that at 60 °C, while at 30 °C, the dynamic modulus at 25 Hz is observed to be 2.72 times greater than that at 0.1 Hz. Furthermore, the rutting resistance factors of the asphalt mixtures increase with loading frequency but decrease with temperature. The rutting factor for ARHM-13 at a frequency of 10 Hz is found to be 22.98 times higher at 15 °C compared to that at 60 °C, while at a temperature of 30 °C, the rutting factor for this material is observed to be 3.09 times greater at a frequency of 25 Hz than at 0.1 Hz. These findings suggest that rutting is most likely when vehicles drive at low speeds in hot weather conditions

    Characterization of Asphalt Mixture Moduli under Different Stress States

    No full text
    Modulus testing methods under various test conditions have a large influence on modulus test results, which hinders the accurate evaluation of the stiffness of asphalt mixtures. In order to decrease the uncertainty in the stiffness characteristics of asphalt mixtures under various stress states, the traditional unconfined compression test, direct tensile test, and the synchronous test method, based on the indirect tension and four-point bending tests, were carried out for different loading frequencies. Results showed that modulus test results were highly sensitive to the shape, size, and stress state of the specimen. Additionally, existing modulus characteristics did not reduce these differences. There is a certain correlation between the elastic modulus ratio and the frequency ratio for asphalt under multiple stress states. The modulus, under multiple stress states, was processed using min⁻max normalization. Then, the standardization model for tensile and compressive characteristics of asphalt under diverse stress states was established based on the sample preparation, modulus ratio variations, and loading frequency ratio. A method for deriving other moduli from one modulus was realized. It is difficult to evaluate the stiffness performance in diverse stress states for asphalt by only using conventional compressive and tensile tests. However, taking into account the effects of stress states and loading frequencies, standardized models can be used to reduce or even eliminate these effects. The model realizes the unification of different modulus test results, and provides a theoretical, methodological, and technical basis for objectively evaluating moduli

    A structural design for semi-rigid base asphalt pavement based on modulus optimization

    No full text
    The early damage of the semi-rigid base asphalt pavement is related to the pavement structure modulus\u27s unreasonable matching. In this study, three typical pavement structures were selected to analyze the pavement structures\u27 influence on the pavement service life. A three-dimensional finite element pavement structure model was established. The independent variables are subgrade modulus, base course modulus, and subbase modulus. The deflection, the bottom tensile stress, and maximum shear stress were chosen as the evaluation indexes. The effect of the modulus on the mechanical response of the pavement structure was analyzed. The optimal modulus combination of the pavement structure was determined through multi-factor range analysis. The mechanical response and fatigue life before and after the optimization pavement structure were compared. The results showed that the field measured modulus of Structure 1 and 2 was higher than the design modulus. Moreover, while the modulus of base course and subbase course was increased, the deflection gradually reduced. The base course\u27s bottom tensile stress and the subbase were increased, and the maximum shear stress was basically unchanged. After the modulus combination optimized pavement structure, the mechanical response was significantly reduced. The fatigue life based on the deflection and bottom tensile stress, and the laboratory normalized fatigue equation were significantly increased. By the combination of fatigue performance of pavement materials and pavement structure, it was possible to provide an effective optimization method for the design of semi-rigid base asphalt pavement in this research work

    Standardization of Fatigue Characteristics of Cement-Treated Aggregate Base Materials under Different Stress States

    Get PDF
    In this study, to decrease the evaluation uncertainty of the fatigue characteristics of cement-treated aggregate base materials under different test conditions, unconfined compressive, indirect tensile, flexural tensile strength tests and fatigue tests of these base materials with different cement content and at different curing times were carried out. The Weibull distribution was employed to analyze fatigue test results. The standardization model of fatigue characteristics for cement-treated aggregate base materials under different stress states was established. Based on the interval analysis theory, the fatigue characteristic model under different stress states was established using interval parameters. Results revealed that the curing time and cement content considerably affect the strength and fatigue characteristics of cement-treated aggregate base materials, and with increasing cement content and curing time, the fatigue resistance of cement-treated aggregate base materials can be improved. Clear differences between the fitting parameters a and b of the S-N fatigue equation of cement-treated aggregate base materials under different stress states were observed, which can be eliminated by using the analysis method based on the Weibull distribution and the standardization model, and a unified expression for the cement-treated aggregate base materials under different test conditions was realized. A Standardization model of fatigue characteristics based on the interval analysis new method could solve several problems such as inadequate sampling representation, low precision, and insufficient stability of test equipment; thus, the errors caused by materials, structures, the environment, and loads can be reduced, making the fatigue life interval more reasonable and scientific compared to the point numerical fatigue life. Regression parameters a and be were in intervals [9.0, 10.6] and [9.9, 11.3], respectively, and parameters a and b were similar, which improve the test accuracy and reduce the data error

    Ultra-Long-Distance Hybrid BOTDA/Ф-OTDR

    No full text
    In the distributed optical fiber sensing (DOFS) domain, simultaneous measurement of vibration and temperature/strain based on Rayleigh scattering and Brillouin scattering in fiber could have wide applications. However, there are certain challenges for the case of ultra-long sensing range, including the interplay of different scattering mechanisms, the interaction of two types of sensing signals, and the competition of pump power. In this paper, a hybrid DOFS system, which can simultaneously measure temperature/strain and vibration over 150 km, is elaborately designed via integrating the Brillouin optical time-domain analyzer (BOTDA) and phase-sensitive optical time-domain reflectometry (Ф-OTDR). Distributed Raman and Brillouin amplifications, frequency division multiplexing (FDM), wavelength division multiplexing (WDM), and time division multiplexing (TDM) are delicately fused to accommodate ultra-long-distance BOTDA and Ф-OTDR. Consequently, the sensing range of the hybrid system is 150.62 km, and the spatial resolution of BOTDA and Ф-OTDR are 9 m and 30 m, respectively. The measurement uncertainty of the BOTDA is ± 0.82 MHz. To the best of our knowledge, this is the first time that such hybrid DOFS is realized with a hundred-kilometer length scale

    Exchange field enhanced upper critical field of the superconductivity in compressed antiferromagnetic EuTe2

    Full text link
    We report high pressure studies on the C-type antiferromagnetic semiconductor EuTe2 up to 36.0 GPa. A structural transition from the I4/mcm to C2/m space group is identified at ~16 GPa. Superconductivity is discovered above ~5 GPa in both the I4/mcm and C2/m space groups. In the low-pressure phase (< 16 GPa), the antiferromagnetic transition temperature is enhanced with increasing pressure due to the enhanced magnetic exchange interactions. Magnetoresistance measurements indicate an interplay between the local moments of Eu2+ and the conduction electrons of Te 5p orbits. The upper critical field of the superconductivity is well above the Pauli limit. Across the structural transition to the high-pressure phase (> 16 GPa), EuTe2 becomes nonmagnetic and the superconducting transition temperature evolves smoothly with the upper critical field below the Pauli limit. Therefore, the high upper critical field of EuTe2 in the low-pressure phase is due to the exchange field compensation effect of the Eu magnetic order and the superconductivity in both structures may arise in the framework of the BCS theory.Comment: 11 pages,5 figures with 8 pages supplementar
    corecore