3 research outputs found

    A magnetic map leads juvenile European eels to the Gulf Stream

    Get PDF
    Migration allows animals to track the environmental conditions that maximize growth, survival, and reproduction [ 1–3 ]. Improved understanding of the mechanisms underlying migrations allows for improved management of species and ecosystems [ 1–4 ]. For centuries, the catadromous European eel (Anguilla anguilla) has provided one of Europe’s most important fisheries and has sparked considerable scientific inquiry, most recently owing to the dramatic collapse of juvenile recruitment [ 5 ]. Larval eels are transported by ocean currents associated with the Gulf Stream System from Sargasso Sea breeding grounds to coastal and freshwater habitats from North Africa to Scandinavia [ 6, 7 ]. After a decade or more, maturing adults migrate back to the Sargasso Sea, spawn, and die [ 8 ]. However, the migratory mechanisms that bring juvenile eels to Europe and return adults to the Sargasso Sea remain equivocal [ 9, 10 ]. Here, we used a “magnetic displacement” experiment [ 11, 12 ] to show that the orientation of juvenile eels varies in response to subtle differences in magnetic field intensity and inclination angle along their marine migration route. Simulations using an ocean circulation model revealed that even weakly swimming in the experimentally observed directions at the locations corresponding to the magnetic displacements would increase entrainment of juvenile eels into the Gulf Stream System. These findings provide new insight into the migration ecology and recruitment dynamics of eels and suggest that an adaptive magnetic map, tuned to large-scale features of ocean circulation, facilitates the vast oceanic migrations of the Anguilla genu

    Response to Durif et al.

    Get PDF
    Our recent study [1] in Current Biology used a magnetic displacement experiment and simulations in an ocean circulation model to provide evidence that young European eels possess a ‘magnetic map’ that can aid their marine migration. Our results support two major conclusions: first, young eels distinguish among magnetic fields corresponding to locations across their marine range; second, for the fields that elicited significantly non-random orientation, swimming in the experimentally observed direction from the corresponding locations would increase entrainment in the Gulf Stream system. In their critique, Durif et al. [2] seem to conflate the separate and potentially independent ‘map step’ and ‘compass step’ of animal navigation. In the map step, an animal derives positional information to select a direction, whereas in the compass step the animal maintains that heading 3, 4. Our experiment was designed such that differences in eel orientation among treatments would indicate an ability to use the magnetic field as a map; the compass cue(s) used by eels was not investigated
    corecore