13 research outputs found

    Observations on the wastage of raw material and recovery of meat in the prawn processing industry

    Get PDF
    The wastage of prawns due to spoilage in processing factories accounted to about 0-12% in 1974, 0-35% in 1975, 0-3% in 1976 and 0-4% in 1977. Spoilage increases with the time lag between catching and processing and also due to defective icing. The paper discusses the counts of whole prawns required for obtaining meat of specified size grades

    Building biofilms in vital host tissues: a survival strategy of Actinomyces radicidentis

    Full text link
    OBJECTIVE: To investigate the ability of Actinomyces radicidentis to survive and establish in soft connective tissue that grew into subcutaneously implanted tissue cages in Sprague-Dawley rats. STUDY DESIGN: Known concentrations of A. radicidentis suspension, grown on blood agar and broth cultures, were inoculated into tissue cages in rats. The cage contents were retrieved after 7, 14, and 28 days for culturing and correlative light and transmission electron microscopy. RESULTS: Cell suspensions harvested from both types of cultures showed substantial decline in numbers in tissue cages during the observation period. However, correlative light and transmission electron microscopy revealed numerous aggregates of coccoid bacteria already by 7 days of observation compared with the formation of well established colonies with characteristic actinomycotic features by 14 days after inoculation. CONCLUSIONS: These results suggest that the pathogenicity of A. radicidentis is due to its ability to form large aggregates of cells held together by embedding themselves in an extracellular matrix in vital host tissues. Thus, A. radicidentis, like other pathogenic Actinomyces, existing in the protected biofilm-environment can collectively evade destruction and elimination by host defenses, including phagocytosis

    Experimental evidence supports the abscess theory of development of radicular cysts

    Full text link
    OBJECTIVE: The objective of this study was to experimentally induce inflammatory cysts in an animal model so as to test the hypothesis that radicular cysts develop via the "abscess pathway." METHODOLOGY: Twenty-eight perforated custom-made Teflon cages were surgically implanted into defined locations in the back of 7 Sprague Dawley rats. A week after the implantation of the cages, a known quantity of freshly grown, close allogeneic oral keratinocytes in phosphate buffer solution (PBS) was injected into each cage. One cage per animal was treated as the control that received only epithelial cells. The remaining 3 cages of each animal were trials. Seven days post epithelial cell inoculation; a suspension of 0.2 mL of Fusobacterium nucleatum (10(8) bacteria per mL) was injected into each of the 3 trial cages. Two, 12, and 24 weeks after the inoculation of the bacteria, the cages were taken out, and the tissue contents were fixed and processed by correlative light and transmission electron microscopy. Sixteen of the 21 trial cages could be processed and yielded results. RESULTS: Inoculations of epithelial cells followed 1 week later by F. nucleatum into tissue cages resulted in the development inflammatory cysts in 2 of the 16 cages. The 2 cages contained a total of 4 cystic sites. None of the control cages showed the presence of any cyst-like pathology. CONCLUSIONS: Inflammatory cysts were induced by initiating acute inflammatory foci (abscess/necrotic area) by bacterial injection that got enclosed by a proliferating epithelium. This finding provides strong experimental evidence in support of the "abscess theory" of development of radicular cysts

    Biocompatibility of Beta-tricalcium phosphate root replicas in porcine tooth extraction sockets - a correlative histological, ultrastructural, and x-ray microanalytical pilot study.

    Full text link
    This investigation studies porcine tissue response in tooth extraction sockets treated with root replicas made out of Beta-tricalcium phosphate (Beta-TCP; Beta-Ca(3)(PO(4))(2)) granules, molded and held together by thermal fusion of a thin film of polyglycolic-polylactic acid copolymer. Six left mandibular third incisors (n (1)/4 6) of experimental pigs are treated with the root replicas and four contralateral incisors are used as nontreated controls (n (1)/4 4). Two animals each were killed at 20, 40, and 60 weeks of observation periods. The mandibular jaw segments were prepared in toto for light microscopy by resin embedding and serial ground sectioning. Additionally, one Beta-TCP-treated socket at 60 weeks was thoroughly investigated by correlative light, electron microscopic and electron probe X-ray microanalysis to assess the bio-absorbability and host removal of the replica material from the implant site. The extraction wounds of the animals healed satisfactorily with very little histologically observable differences in the healing pattern of the test and control sites. The Beta-TCP was completely removed from extracellular sites, but at 60 weeks, remnants of it were found in the cytoplasm of multinucleated giant cells. The root replicas made out of Beta-TCP were biocompatible and bioabsorbable. Osseous healing occurred both in the test and control sockets, but the healing process was delayed due to the presence of Beta-TCP particles
    corecore