14 research outputs found

    Folate-Targeted Curcumin-Loaded Niosomes for Site-Specific Delivery in Breast Cancer Treatment: In Silico and In Vitro Study

    Get PDF
    As the most common cancer in women, efforts have been made to develop novel nanomedicine-based therapeutics for breast cancer. In the present study, the in silico curcumin (Cur) properties were investigated, and we found some important drawbacks of Cur. To enhance cancer therapeutics of Cur, three different nonionic surfactants (span 20, 60, and 80) were used to prepare various Cur-loaded niosomes (Nio-Cur). Then, fabricated Nio-Cur were decorated with folic acid (FA) and polyethylene glycol (PEG) for breast cancer suppression. For PEG-FA@Nio-Cur, the gene expression levels of Bax and p53 were higher compared to free drug and Nio-Cur. With PEG-FA-decorated Nio-Cur, levels of Bcl2 were lower than the free drug and Nio-Cur. When MCF7 and 4T1 cell uptake tests of PEG-FA@Nio-Cur and Nio-Cur were investigated, the results showed that the PEG-FA-modified niosomes exhibited the most preponderant endocytosis. In vitro experiments demonstrate that PEG-FA@Nio-Cur is a promising strategy for the delivery of Cur in breast cancer therapy. Breast cancer cells absorbed the prepared nanoformulations and exhibited sustained drug release characteristics

    Chemo-Selective Protection of Aldehydes Functional Group Catalyzed by MOFs

    No full text
    A metal-organic framework Zn2(BDC)2(DABCO) was employed as a reusable heterogeneous acidic catalyst in the acylation reaction of various benzaldehydes with acetic anhydride under microwave irradiation. The outstanding features of this efficient solvent-free method are short reaction time, ease of product separation, greatest yields, and the ability to reuse the catalyst several times

    Novel magnetic propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO3H) as a highly efficient and reusable nanoreactor for the sustainable synthesis of imidazopyrimidine derivatives

    No full text
    Abstract In this study, preparation and characterization of a new magnetic propylsulfonic acid-anchored isocyanurate bridging periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO3H) is described. The iron oxide@PMO-ICS-PrSO3H nanomaterials were characterized by Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and field emission scanning electron microscopy as well as thermogravimetric analysis, N2 adsorption–desorption isotherms and vibrating sample magnetometer techniques. Indeed, the new obtained materials are the first example of the magnetic thermally stable isocyanurate-based mesoporous organosilica solid acid. Furthermore, the catalytic activity of the Iron oxide@PMO-ICS-PrSO3H nanomaterials, as a novel and highly efficient recoverable nanoreactor, was investigated for the sustainable heteroannulation synthesis of imidazopyrimidine derivatives through the Traube–Schwarz multicomponent reaction of 2-aminobenzoimidazole, C‒H acids and diverse aromatic aldehydes. The advantages of this green protocol are low catalyst loading, high to quantitative yields, short reaction times and the catalyst recyclability for at least four consecutive runs

    Solvent-Free Mechanochemical Preparation of Metal-Organic Framework ZIF-67 Impregnated by Pt Nanoparticles for Water Purification

    No full text
    In this study, the crystalline metal-organic framework (MOF) ZIF-67 was obtained using the solvent-free ball milling method, which is a fast, simple, and economical green method without the need to use solvents. Using the impregnation method, platinum metal ions were loaded in the MOF cavities. Various descriptive methods have been used to explain the prepared Pt@ZIF-67 compound, such as FTIR, BET, TEM, SEM, EDS, XRD, TGA, and ICP. Based on this, the results showed that Pt nanoparticles (0.26 atom%) were located inside the pores of ZIF-67. In addition, no evidence supports their accumulation on the MOF surface. The efficiency of Pt@ZIF-67 was approved in the reduction of toxic and harmful nitrophenol compounds in water. The results showed that the removal of 4-nitrophenol in aqueous medium was successfully achieved with 94.5% conversion in an optimal time of 5 min with the use of NaBH4, and catalyzed by Pt@ZIF-67. Additionally, the Pt@ZIF-67 was recoverable and successfully tested for five qtr runs, with reasonable efficiency

    I2/TBHP promoted isocyanide insertion cyclization reaction for the synthesis of quinazolin fused benzoimidazole as a selective methanol detection probe

    No full text
    An efficient I2/TBHP promoted isocyanide insertion cyclization reaction for the synthesis of quinazolines-fused benzoimidazole was reported. The synthesized compounds have a unique potential to use as a selective solvatochromic fluorescence probe for methanol detection from other solvents, especially EtOH. Introducing a simple one-step method and using a more acceptable iodine molecule instead of expensive transition metal catalysts are the most important advantages of this strategy
    corecore