44 research outputs found

    An application of adaptive fault-tolerant control to nano-spacecraft

    Get PDF
    Since nano-spacecraft are small, low cost and do not undergo the same rigor of testing as conventional spacecraft, they have a greater risk of failure. In this paper we address the problem of attitude control of a nano-spacecraft that experiences different types of faults. Based on the traditional quaternion feedback control method, an adaptive fault-tolerant control method is developed, which can ensure that the control system still operates when the actuator fault happens. This paper derives the fault-tolerant control logic under both actuator gain fault mode and actuator deviation fault mode. Taking the parameters of the UKube-1 in the simulation model, a comparison between a traditional spacecraft control method and the adaptive fault-tolerant control method in the presence of a fault is undertaken. It is shown that the proposed controller copes with faults and is able to complete an effective attitude control manoeuver in the presence of a fault

    Robust vibration control of a flexible manipulator in presence of payload uncertainty

    Get PDF
    This paper presents the results of hybrid vibration controllers applied for vibration suppression of flexible manipulator. The model of the manipulator is assumed to be uncertain due to varying payload. To cater for the model uncertainty the proposed hybrid controller combines robust input shaping for command input with μ-controller applied for active vibration suppression using smart materials. Dependence of hybrid controller performance on design frequencies of input shaper is also studied. Results showed that the performance of hybrid controller is strongly dependent on the parameters used for designing input shaper, and the effectiveness of the hybrid controller can be substantially increased by judiciously selecting the design frequencies of input shaper. Effectiveness of the proposed controller is demonstrated by comparative studies with hybrid controllers formed by robust input shaping and PPF (positive position feedback) controller. Results are compared for suppressing vibrations resulting from slewing motion of manipulator, where the slewing motion is controlled by the PD controller. Results of comparisons showed that the μ-controller gave better performance in terms of settling time and energy consumption than those using PPF

    Active vibration control of a slewing spacecraft’s panel using H∞ control

    Get PDF
    Application of H∞ control for multimodal vibration suppression of a slewing spacecraft using piezoelectric actuators is presented in this paper. For treating vibration suppression independent of attitude control law while taking into account relative modal responses; a method for modeling effect of attitude maneuver excitations as modal disturbances is proposed. Commercial finite element software ANSYS is used for obtaining system model. Modifications of system model and selection of weights required for control synthesis are explained in detail. The method is applied for suppressing vibration of first two modes of a flexible spacecraft. Results showed effectiveness of the proposed method

    Dynamics and Control of a Flexible Solar Sail

    Get PDF
    Solar sail can merely make use of solar radiation pressure (SRP) force as the thrust for space missions. The attitude dynamics is obtained for the highly flexible solar sail with control vanes, sliding masses, and a gimbaled control boom. The vibration equations are derived considering the geometric nonlinearity of the sail structure subjected to the forces generated by the control vanes, solar radiation pressure (SRP), and sliding masses. Then the dynamic models for attitude/vibration controller design and dynamic simulation are obtained, respectively. The linear quadratic regulator (LQR) based and optimal proportional-integral (PI) based controllers are designed for the coupled attitude/vibration models with constant disturbance torques caused by the center-of-mass (cm)/center-of-pressure (cp) offset, respectively. It can be concluded from the theoretical analysis and simulation results that the optimal PI based controller performs better than the LQR based controller from the view of eliminating the steady-state errors. The responses with and without the geometrical nonlinearity are performed, and the differences are observed and analyzed. And some suggestions are also presented

    Adaptive flault-tolerant control of spacecraft attitude dynamics with actuator failures

    Get PDF
    Spacecraft play an increasingly important role in various areas of modern society, such as telecommunication, earth observation, and space exploration. It is estimated that there have been more than 7000 spacecrafts launched all over the world. Despite rigorous testing many of these spacecraft fail on orbit due to various reasons [1], which consequently often lead to the failure of the whole mission. According to [2], over 30% of spacecraft failures occur at the subsystem level of the Attitude and Orbit Control System (AOCS). Moreover about 50% of the AOCS failures are attributed to actuator errors. The purpose of this paper is to present an actuator fault-tolerant attitude control

    Robust Trajectory Estimation in Ballistic Phase using Out-of-Sequence High-degree Cubature Huber-based Filtering

    No full text

    Mixed-Degree Cubature H∞ Information Filter-Based Visual-Inertial Odometry

    No full text
    Visual–inertial odometry is an effective system for mobile robot navigation. This article presents an egomotion estimation method for a dual-sensor system consisting of a camera and an inertial measurement unit (IMU) based on the cubature information filter and H∞ filter. The intensity of the image was used as the measurement directly. The measurements from the two sensors were fused with a hybrid information filter in a tightly coupled way. The hybrid filter used the third-degree spherical-radial cubature rule in the time-update phase and the fifth-degree spherical simplex-radial cubature rule in the measurement-update phase for numerical stability. The robust H∞ filter was combined into the measurement-update phase of the cubature information filter framework for robustness toward non-Gaussian noises in the intensity measurements. The algorithm was evaluated on a common public dataset and compared to other visual navigation systems in terms of absolute and relative accuracy
    corecore