117 research outputs found

    Vortex-like state observed in ferromagnetic contacts

    Full text link
    Point-contacts (PC) offer a simple way to create high current densities, 10^9 A/cm^2 and beyond, without substantial Joule heating. We have shown recently (Nano Letters, 7 (2007) 927) that conductivity of nanosized PCs between a normal and ferromagnetic metals exhibits bi-stable hysteretic states versus both bias current and external magnetic field - the effect typical for spin-valve structures. Here we report that apart from the bi-stable state a third intermediate-resistance state is occasionally observed. We interpret this state as due to a spin-vortex in the PC, nucleated either by Oersted field of the bias current and/or by the circular geometry of PC. The observed three-level-states in the PC conductivity testify that the interface spins are both weakly coupled to the spins in the bulk and have depressed exchange interaction within the surface layer.Comment: 4 pgs., 4 figs. submitted to ICM-09 (July 26-21, Karlsruhe) V2: corrected typos, accepted for publication in J. Phys.: Conf. Serie

    Superconducting gap and pair breaking in CeRu2 studied by point contacts

    Full text link
    The superconducting gap in a CeRu2_{2} single crystal is investigated by point contacts. BCS-like behavior of the gap Δ\Delta in the temperature range below Tc<_{c}^{*}<Tc_{c}, where Tc_{c} is the critical temperature, is established, indicating the presence of a gapless superconductivity region (between Tc_{c}^{*} and Tc_{c}). The pair-breaking effect of paramagnetic impurities, supposedly Ce ions, is taken into consideration using the Scalski-Betbeder-Matibet-Weiss approach based on Abrikosov-Gorkov theory. It allows us to recalculate the superconducting order parameter Δα\Delta ^{\alpha} (in the presence of paramagnetic impurities) and the gap ΔP\Delta ^{P} (in the pure case) for the single crystal and for the previously studied polycrystalline CeRu2_{2}. The value 2ΔP\Delta^{P}(0) \approx 2 meV, with 2ΔP\Delta ^{P}(0)//kB_{B}Tc_{c} \approx 3.75, is found in both cases, indicating that CeRu2_{2} is a ``moderate'' strong-coupling superconductor.Comment: 4 pages incl. 3 figs., publ. in Fiz. Nizk. Temp. (http://fnte.ilt.kharkov.ua/list.html

    Systematic study of the two band/two gap superconductivity in carbon-substituted MgB2 by point-contact spectroscopy

    Full text link
    Point-contact measurements on the carbon-substituted Mg(B1x_{1-x}Cx_x)2_2 filament/powder samples directly reveal a retention of the two superconducting energy gaps in the whole doping range from x=0x = 0 to x0.1x \approx 0.1. The large gap on the σ\sigma-band is decreased in an essentially linear fashion with increasing the carbon concentrations. The changes in the the small gap Δπ\Delta_{\pi} up to 3.8 % C are proportionally smaller and are more difficult to detect but for the heavily doped sample with x0.1x \approx 0.1 and Tc=22T_c = 22 K both gaps are still present, and significantly reduced, consistent with a strong essentially linear, reduction of each gap with the transition temperature.Comment: 5 eps figure

    The Fano effect in the point contact spectroscopy of heavy electron materials

    Full text link
    We show that Fano interference explains how point contact spectroscopy in heavy electron materials probes the emergence of the Kondo heavy electron liquid below the same characteristic temperature T* as that seen in many other experiments, and why the resulting measured conductance asymmetry reflects the universal Kondo liquid behavior seen in these. Its physical origin is the opening of a new channel for electron tunneling beyond that available from the background conduction electrons. We propose a simple phenomenological expression for the resulting Fano interference that provides a good fit to the experimental results for CeCoIn5_5, CeRhIn5_5 and YbAl3_3, over the entire range of bias voltages, and deduce a life-time of the heavy quasiparticle excitations that agrees well with recent state-of-the-art numerical calculations.Comment: 5 pages, 3 figures. A microscopic derivation for the Fano effect is include

    Comment on "Experimental determination of superconducting parameters for the intermetallic perovskite superconductor MgCNi3_3"

    Full text link
    In a recent paper (Phys. Rev. {\bf B 67}, 094502 (2003)) Mao et al. investigated the bias-dependent conductance of mechanical junctions between superconducting MgCNi3_3 and a sharp W tip. They interpreted their results in terms of 'single-particle tunneling'. We show it is more likely that current transport through those junctions is determined by thermal effects due to the huge normal-state resistivity of MgCNi3_3. Therefore no conclusion can be drawn about the possible unconventional pairing or strong-coupling superconductivity in MgCNi3_3.Comment: 2 pages, 1 Fig. Comment on Z. Q. Mao et al. (Phys. Rev. {\bf B 67}, 094502 (2003)

    Comment on "Spectroscopic Evidence for Multiple Order Parameter Components in the Heavy Fermion Superconductor CeCoIn5_5"

    Full text link
    Recently, Rourke et al. reported point-contact spectroscopy results on the heavy-fermion superconductor CeCoIn5_5 [1]. They obtained conductance spectra on the c-axis surfaces of CeCoIn5_5 single crystals. Their major claims are two-fold: CeCoIn5_5 has i) d-wave pairing symmetry and ii) two coexisting order parameter components. In this Comment, we show that these claims are not warranted by the data presented. [1] Rourke et al., Phys. Rev. Lett. 94, 107005 (2005).Comment: accepted for publication in Phys. Rev. Lett., final for
    corecore