23 research outputs found

    Applications of multi-walled carbon nanotube in electronic packaging

    Get PDF
    Thermal management of integrated circuit chip is an increasing important challenge faced today. Heat dissipation of the chip is generally achieved through the die attach material and solders. With the temperature gradients in these materials, high thermo-mechanical stress will be developed in them, and thus they must also be mechanically strong so as to provide a good mechanical support to the chip. The use of multi-walled carbon nanotube to enhance the thermal conductivity, and the mechanical strength of die attach epoxy and Pb-free solder is demonstrated in this work

    Texture evolution in a CrMnFeCoNi high-entropy alloy manufactured by laser powder bed fusion

    No full text
    Additive manufacturing (AM) techniques including laser powder bed fusion have been widely used to produce metallic components with microstructures and mechanical properties distinctly different from the conventionally manufactured counterparts. Understanding how AM parameters affect the evolution of microstructure, including texture, of these AM metallic components is critical for appropriate manipulation of their processing and therefore their mechanical properties. Here we conducted a systematic investigation of texture evolution of a face-centred cubic CrMnFeCoNi high-entropy alloy cuboid fabricated using laser powder bed fusion. Our results showed that the texture evolutions along the build direction were different between the corner and central parts of the sample. Detailed analysis suggested that the texture evolution is closely related to local thermal gradient, which is a property that can be manipulated through changing AM parameters. The different textures lead to the significant variations of mechanical properties within the sample

    Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting

    No full text
    Metallic materials produced by additive manufacturing experience complex stress and thermal gyrations along the build direction. This has the potential to produce complicated heterogeneous microstructures that may exhibit a wide variety of mechanical properties. There remains a paucity of studies on the nature and the formation mechanisms of the microstructural heterogeneity and this limits our capability for microstructural design in additively manufactured metallic materials. Here, we present an electron microscopy-based investigation of a CrMnFeCoNi high-entropy alloy produced by selective laser melting. We have focussed on a systematic investigation of the microstructural evolution along the build direction. Our results reveal a remarkable hierarchy of microstructures, including the formation of nanocrystalline grains, elemental segregation and precipitation, cellular dislocation structures, deformation twinning, and deformation-induced phase transformation. Our research clarifies the relationships amongst different features, and provides guidance for future structural manipulation of materials produced by additive manufacturing
    corecore