101 research outputs found
Über das ungewöhnliche Schmelzverhalten von Mischungen aus Homoadamantan-1- und -3-carbonsäure
2-Amino-5-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate
In the title molecular salt, C6H9N2
+·C7H3N2O7
−, the 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.023 (1) Å. There is an intramolecular O—H⋯O hydrogen bond in the 3,5-dinitrosalicylate anion, which generates an S(6) ring motif. In the crystal, the protonated N atom and the 2-amino group are hydrogen bonded to the carboxylate O atoms via a pair of N—H⋯O hydrogen bonds, forming an R
2
2(8) ring motif. Weak intermolecular C—H⋯O interactions help to further stabilize the crystal structure
2-Amino-5-methylpyridinium 3-aminobenzoate
In the title compound, C6H9N2
+·C7H6NO2
−, the H atom of the N—H group and an H atom of the 2-amino group from the cation are involved in intermolecular N—H⋯O hydrogen bonds with the O atoms of the carboxylate group of the anion, forming an R
2
2(8) ring motif. These ring motifs are, in turn, connected by further N—H⋯O hydrogen bonds, forming a two-dimensional network. The crystal structure is further stabilized by π⋯π stacking interactions involving the benzene and pyridinium rings with a centroid–centroid distance of 3.7594 (8) Å
2-Amino-5-methylpyridinium picolinate 0.63-hydrate
The asymmetric unit of the title compound, C6H9N2
+·C6H4NO2
−·0.63H2O, contains two crystallographically independent 2-amino-5-methylpyridinium cations, a pair of picolinate anions and two water molecules, one with an occupancy of 0.25. Both the 2-amino-5-methylpyridine molecules are protonated at the pyridine N atoms. In the crystal structure, the cations, anions and water molecules are linked via N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds, as well as by C—H⋯O contacts, forming a chain along the b axis. In addition, weak π–π interactions are observed between pyridinium rings, with centroid–centroid distances of 3.5306 (13) Å
2-Amino-5-methylpyridinium 3-carboxy-4-hydroxybenzenesulfonate
The asymmetric unit of the title salt, C6H9N2
+·C7H5O6S−, contains two crystallographically independent 2-amino-5-methylpyridinium cations and two sulfosalicylate anions. In the crystal structure, the sulfonate group of each 3-carboxy-4-hydroxybenzenesulfonate anion interacts with the corresponding 2-amino-5-methylpyridinium cation via a pair of N—H⋯O hydrogen bonds, forming an R
2
2(8) ring motif. The ionic units are linked by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds. Furthermore, the crystal structure is stabilized by π–π interactions between the benzene and pyridine rings [centroid–centroid distances = 3.5579 (8) and 3.8309 (8) Å]. There are also intramolecular O—H⋯O hydrogen bonds in the anions, which generate S(6) ring motifs
Tetrakis(2-amino-6-methylpyridinium) hexachloridobismuthate(III) chloride monohydrate
The asymmetric unit of the title compound, (C6H9N2)4[BiCl6]Cl·H2O, contains four protonated 2-amino-6-methylpyridine (HAMP) cations and two-halves of two [BiCl6]3− anions, together with one water molecule and one chloride anion. The BiIII atoms are hexacoordinated by Cl atoms, forming distorted octahedral geometries. In the crystal structure, intramolecular O—H⋯Cl and N—H⋯Cl, and intermolecular O—H⋯Cl and N—H⋯O interactions link the molecules into a three-dimensional network
Bis(2-amino-5-methylpyridinium) fumarate–fumaric acid (1/1)
In the crystal structure of the title compound, C6H9N2
+·0.5C4H2O4
2−·0.5C4H6O4, the fumarate dianion and fumaric acid molecule are located on inversion centres. The 2-amino-5-methylpyrimidinium cation interacts with the carboxylate group of the fumarate anion through a pair of N—H⋯O hydrogen bonds, forming an R
2
2(8) ring motif. These motifs are centrosymmetrically paired via N—H⋯O hydrogen bonds, forming a complementary DDAA array. The carboxyl groups of the fumaric acid molecules and the carboxylate groups of the fumarate anions are hydrogen bonded through O—H⋯O hydrogen bonds, leading to a supramolecular chain along [101]. The crystal structure is further stabilized by weak C—H⋯O hydrogen bonds
Polymer-surfactant interaction as revealed by the time dependence of surface tension. The EHEC/SDS/water system
Adsorption properties at an air/water interface and interaction between a nonionic polymer ethyl(hydroxyethyl) cellulose (EHEC) and sodium dodecyl sulfate (SDS) were studied by pendant drop tensiometry, enhanced by video-image digitization and computerize</p
Ein Modell zur Verwendung von künstlicher Intelligenz in Start-ups : Designwissenschaftliche Forschung
The field of Artificial Intelligence (Abb.: AI) has seen major developments in recent years. It has been shown that there are many areas in which AI systems are highly efficient, delivering fast and reliable results. The abundance of various AI powered services offers great potential for start-ups, as these services promise to expand the scarce resources of these companies. However, there is a gap in the literature in terms of frameworks and guidelines that can be used by smaller companies. Therefore, a procedure model was developed in this thesis, which can be utilized by start-ups that want to introduce AI into their companies. This thesis is based on a design science research approach consisting of four iterations. In the first iteration, the model was developed from literature and then demonstrated and evaluated during a workshop with a research expert. In the second iteration, the model was revised and then demonstrated and evaluated during expert interviews. In the third iteration, the model was again revised and then demonstrated and evaluated by an existing start-up company, which used the model for about two weeks and then reported on its usability in a post-hoc interview. Finally, in the fourth iteration, the model was finalized. The procedure model was developed as an interactive website, where founders can get an introduction to the topic of AI and then learn about the different ways of introducing AI into their business. To give the user of the model an understanding of how the model should be used, the core principles agility, control and monitoring are described, before the model itself is presented.Der Bereich der Künstlichen Intelligenz (KI) hat sich in den letzten Jahren stark entwickelt. Es hat sich gezeigt, dass es viele Bereiche gibt, in denen KI-Systeme sehr effizient sind und mittlerweile schnelle und zuverlässige Ergebnisse liefern. Die Fülle an verschiedenen KI-gestützten Dienste bietet ein großes Potenzial für Start-ups, da diese Dienste die Möglichkeit bieten die knappen Ressourcen dieser Unternehmen erweitern zu können. Allerdings gibt es in der Literatur eine Lücke in Bezug auf Frameworks und Anleitungen, die von diesen kleineren Unternehmen genutzt werden können. Daher wurde in dieser Arbeit ein Vorgehensmodell entwickelt, das von Start-ups genutzt werden kann, die KI in ihrem Unternehmen einführen wollen. Diese Arbeit basiert auf einem Design Science Research Forschungsansatz, der aus vier Iterationen besteht. In der ersten Iteration wurde das Modell aus der Literatur entwickelt und anschließend in einem Workshop mit einem Forschungsexperten demonstriert und evaluiert. In der zweiten Iteration wurde das Modell überarbeitet und anschließend in Experteninterviews demonstriert und evaluiert. In der dritten Iteration wurde das Modell erneut überarbeitet und anschließend von einem bestehenden Startup- Unternehmen demonstriert und evaluiert, welches das Modell etwa zwei Wochen lang verwendete und anschließend in einem Post-hoc-Interview über seine Nutzbarkeit berichtete. In der vierten Iteration wurde das Modell schließlich fertiggestellt. Das Vorgehensmodell wurde als interaktive Website entwickelt, auf der Gründer eine Einführung in das Thema KI erhalten und anschließend die verschiedenen Möglichkeiten zur Einführung von KI in ihr Unternehmen kennenlernen können. Um dem Nutzer des Modells ein Verständnis dafür zu vermitteln, wie es eingesetzt werden sollte, werden die Kernprinzipien Agilität, Steuerung und Überwachung beschrieben, bevor das Modell selbst vorgestellt wird.submitted by Nahringbauer Georg, B.Sc.Abweichender Titel laut Übersetzung der Verfasserin/des VerfassersMasterarbeit Johannes Kepler Universität Linz 202
Polymer−Surfactant Interaction As Revealed by the Time Dependence of Surface Tension. The EHEC/SDS/Water System
- …
