59 research outputs found

    DNA Interaction Studies of a New Platinum(II) Complex Containing Different Aromatic Dinitrogen Ligands

    Get PDF
    A new mononuclear Pt(II) complex, [Pt(DMP)(DIP)]Cl2.H2O, in which DMP is 4,4-dimethyl-2,2-bipyridine and DIP is 4,7-diphenyl-1,10-phenantroline, has been synthesized and characterized by physicochemical and spectroscopic methods. The binding interaction of this complex with calf thymus DNA (CT-DNA) was investigated using fluorimetry, spectrophotometry, circular dichroism, viscosimetry and cyclic voltametry (CV). UV-VIS spectrum showed 4 nm bathochromic shift of the absorption band at 280 nm along with significant hypochromicity for the absorption band of the complex. The intrnisic binding constant (Kb = 2 × 104 M−1) is more in keeping with intercalators and suggests this binding mode. The viscosity measurements showed that the complex-DNA interaction can be hydrophobic and confirm intercalation. Moreover, the complex induced detectable changes in the CD spectrum of CT-DNA. The fluorescence studies revealed that the probable quenching mechanism of fluorescence of the complex by CT-DNA is static quenching. The thermodynamic parameters (ΔH > 0 and ΔS > 0) showed that main interaction with hydrogenic forces occurred that is intercalation mode. Also, CV results confirm this mode because, with increasing the CT-DNA concentration, shift to higher potential was observed

    Identification of Binding Mode of a Platinum (II) Complex, PtCl2(DIP), and Calf Thymus DNA

    Get PDF
    The Pt(II) complex, PtCl2(DIP) (DIP = chelating dinitrogen ligand: 4,7-diphenyl-1,10-phenanthroline), was synthesized and characterized by elemental analysis (CHN) and 1H NMR and UV-vis techniques. The binding of this complex to calf thymus DNA was investigated using various physicochemical methods such as spectrophotometric, circular dichroism, spectrofluorometric, melting temperature, and viscosimetric techniques. Upon addition of the complex, important changes were observed in the characteristic UV-Vis bands (hyperchromism) of calf thymus DNA (CT-DNA): increase in melting temperature, sharp increase in specific viscosity of DNA, and induced CD spectral changes. Also the fluorescence spectral characteristics and interaction of Pt complex with DNA have been studied. Pt bound to DNA showed a marked decrease in the fluorescence intensity. The results show that both the complex and the NR molecules can intercalate competitively into the DNA double-helix structure. The experimental results show that the mode of binding of the this complex to DNA is classical intercalation

    Synthesis Characterization and DNA Interaction Studies of a New Zn(II) Complex Containing Different Dinitrogen Aromatic Ligands

    No full text
    A mononuclear complex of Zn(II), [Zn(DIP) 2 (DMP)] (NO 3 ) 2 ·2H 2 O in which DIP is 4,7-diphenyl-1,10-phenanthroline and DMP is 4,4 -dimethyl-2,2 -bipyridine has been prepared and characterized by 1 HNMR spectroscopy, FT-IR, UV-Vis and elemental analysis techniques. DNA-binding properties of the complex were studied using UV-vis spectra, circular dichroism (CD) spectra, fluorescence, cyclic voltammetry (CV), and viscosity measurements. The results indicate that this zinc(II) complex can intercalate into the stacked base pairs of DNA and compete with the strong intercalator ethidium bromide for the intercalative binding sites

    Synthesis Characterization and DNA Interaction Studies of a New Zn(II) Complex Containing Different Dinitrogen Aromatic Ligands

    Get PDF
    A mononuclear complex of Zn(II), [Zn(DIP)2 (DMP)] (NO3)2·2H2O in which DIP is 4,7-diphenyl-1,10-phenanthroline and DMP is 4,4′-dimethyl-2,2′-bipyridine has been prepared and characterized by 1HNMR spectroscopy, FT-IR, UV-Vis and elemental analysis techniques. DNA-binding properties of the complex were studied using UV-vis spectra, circular dichroism (CD) spectra, fluorescence, cyclic voltammetry (CV), and viscosity measurements. The results indicate that this zinc(II) complex can intercalate into the stacked base pairs of DNA and compete with the strong intercalator ethidium bromide for the intercalative binding sites

    Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins

    No full text
    The aim of this study was the synthesis of selenium nanoparticles (SeNPs) employing vitamin C as a biocompatible and low toxic reducing agent. The synthesized selenium nanoparticles were characterized by using UV–vis, FT-IR, SEM-EDX, TEM, DLS, and zeta potential measurements. The results of the DPPH free radical scavenging assay demonstrate that this synthesized nano-selenium has strong potentials to scavenge the free radicals and cytotoxicity against MCF-7 and Raji Burkitt's lymphoma cancer cell lines. The interaction of calf thymus DNA (ct-DNA) with SeNPs indicated that the anticancer activity might be associated with the DNA-binding properties of nano-selenium. Finally, it was found that the synthesized nano-selenium can bind to the most important blood proteins such as human serum albumin (HSA), human hemoglobin (HHb), and Cytochrome c (Cyt c). The results showed that the secondary structure of these proteins remains unchanged, suggesting that the synthesized nano-selenium could be employed as a carrier in the drug delivery system without any cytotoxicity effect

    Synthesis, characterization and DNA interaction studies of a new platinum(II) complex containing caffeine and histidine ligands using instrumental and computational methods

    No full text
    <div><p>A new Pt(II) complex, [Pt(Caff)(His)(Cl)] (Caff is Caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione) and His is l-Histidine), was synthesized and characterized using different physicochemical methods. The interaction of this complex with calf thymus DNA (ct-DNA) was investigated by absorption, emission, circular dichroism (CD), and viscosity measurements and molecular docking techniques. The calculated binding constant, <i>K</i><sub>b</sub>, was 5.3 × 10<sup>3</sup> M<sup>−1</sup>. In fluorimetric studies, the enthalpy and entropy of the reaction between the complex and ct-DNA showed that the reaction is exothermic (∆<i>H</i> = −184.07 kJ mol<sup>−1</sup>, ∆<i>S</i> = −551.97 J mol<sup>−1</sup> K<sup>−1</sup>). CD spectra of DNA in the presence of different amounts of the complex showed little changes in both the negative and positive band intensities, which imply a non-intercalative mode between the DNA and the platinum complex. Furthermore, the study of molecular docking also indicated that the complex binds to DNA via a groove binding mode.</p></div

    Binding Studies of a New Water-Soluble Iron(III) Schiff Base Complex to DNA Using Multispectroscopic Methods

    Get PDF
    A novel iron(III) complex [Fe(SF)](ClO4)3.2H2O; in which SF = N,N0-bis{5-[(triphenylphosphonium chloride)-methyl] salicylidene}-o-phenylenediamine) has been synthesized and characterized using different physicochemical methods. The binding of this complex with calf thymus (CT) DNA was investigated by circular dichroism, absorption studies, emission spectroscopy, voltammetric studies, and viscosity measurements. The results showed that this complex can bind to DNA via external and groove binding modes

    DNA Interaction and DNA Cleavage Studies of a New Platinum(II) Complex Containing Aliphatic and Aromatic Dinitrogen Ligands

    Get PDF
    A new Pt(II) complex, [Pt(DIP)(LL)](NO3)2 (in which DIP is 4,7-diphenyl-1,10-phenanthroline and LL is the aliphatic dinitrogen ligand, N,N-dimethyl-trimethylenediamine), was synthesized and characterized using different physico-chemical methods. The interaction of this complex with calf thymus DNA (CT-DNA) was investigated by absorption, emission, circular dichroism (CD), and viscosity measurements. The complex binds to CT-DNA in an intercalative mode. The calculated binding constant, Kb, was 6.6×104 M−1. The enthalpy and entropy changes of the reaction between the complex and CT-DNA showed that the van der Waals interactions and hydrogen bonds are the main forces in the interaction with CT-DNA. In addition, CD study showed that phenanthroline ligand insert between the base pair stack of double helical structure of DNA. It is remarkable that this complex has the ability to cleave the supercoiled plasmid
    corecore