54 research outputs found

    The effects of material formulation and manufacturing process on mechanical and thermal properties of epoxy/clay nanocomposites

    Get PDF
    A holistic study was conducted to investigate the combined effect of three different pre-mixing processes, namely mechanical mixing, ultrasonication and centrifugation, on mechanical and thermal properties of epoxy/clay nanocomposites reinforced with different platelet-like montmorillonite (MMT) clays (Cloisite Na+, Cloisite 10A, Cloisite 15 or Cloisite 93A) at clay contents of 3–10 wt%. Furthermore, the effect of combined pre-mixing processes and material formulation on clay dispersion and corresponding material properties of resulting composites was investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), flexural and Charpy impact tests, Rockwell hardness tests and differential scanning calorimetry (DSC). A high level of clay agglomeration and partially intercalated/exfoliated clay structures were observed regardless of clay type and content. Epoxy/clay nanocomposites demonstrate an overall noticeable improvement of up to 10 % in the glass transition temperature (Tg) compared to that of neat epoxy, which is interpreted by the inclusion of MMT clays acting as rigid fillers to restrict the chain mobility of epoxy matrices. The impact strength of epoxy/clay nanocomposites was also found to increase by up to 24 % with the addition of 3 wt% Cloisite Na+ clays. However, their flexural strength and hardness diminished when compared to those of neat epoxy, arising from several effects including clay agglomeration, widely distributed microvoids and microcracks as well as weak interfacial bonding between clay particles and epoxy matrices, as confirmed from TEM and SEM results. Overall, it is suggested that an improved technique should be used for the combination of pre-mixing processes in order to achieve the optimal manufacturing condition of uniform clay dispersion and minimal void contents

    Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic

    Get PDF
    Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children <18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p<0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p<0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p<0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer

    Decision-making in closure of oroantral communication and fistula

    No full text
    After removal of a dental implant or extraction of a tooth in the upper jaw, the closure of an oroantral fistula (OAF) or oroantral communication (OAC) can be a difficult problem confronting the dentist and surgeon working in the oral and maxillofacial region. Oroantral communication (OAC) acts as a pathological pathway for bacteria and can cause infection of the antrum, which further obstructs the healing process as it is an unnatural communication between the oral cavity and the maxillary sinus. There are different ways to perform the surgical closure of the OAC. The decision-making in closure of oroantral communication and fistula is influenced by many factors. Consequently, it requires a combination of knowledge, experience, and information gathering. Previous narrative research has focused on assessments and comparisons of various surgical techniques for the closure of OAC/OAF. Thus, the decision-making process has not yet been described comprehensively. The present study aims to illustrate all the factors that have to be considered in the management of OACs and OAFs that determine optimal treatment
    • …
    corecore