61 research outputs found
Recommended from our members
Multivariate Modeling Identifies Neutrophil- and Th17-Related Factors as Differential Serum Biomarkers of Chronic Murine Colitis
Background: Diagnosis of chronic intestinal inflammation, which characterizes inflammatory bowel disease (IBD), along with prediction of disease state is hindered by the availability of predictive serum biomarker. Serum biomarkers predictive of disease state will improve trials for therapeutic intervention, and disease monitoring, particularly in genetically susceptible individuals. Chronic inflammation during IBD is considered distinct from infectious intestinal inflammation thereby requiring biomarkers to provide differential diagnosis. To address whether differential serum biomarkers could be identified in murine models of colitis, immunological profiles from both chronic spontaneous and acute infectious colitis were compared and predictive serum biomarkers identified via multivariate modeling.Methodology/Principal Findings: Discriminatory multivariate modeling of 23 cytokines plus chlorotyrosine and nitrotyrosine (protein adducts from reactive nitrogen species and hypochlorite) in serum and tissue from two murine models of colitis was performed to identify disease-associated biomarkers. Acute C. rodentium-induced colitis in C57BL/6J mice and chronic spontaneous Helicobacter-dependent colitis in TLR4−/− x IL-10−/− mice were utilized for evaluation. Colon profiles of both colitis models were nearly identical with chemokines, neutrophil- and Th17-related factors highly associated with intestinal disease. In acute colitis, discriminatory disease-associated serum factors were not those identified in the colon. In contrast, the discriminatory predictive serum factors for chronic colitis were neutrophil- and Th17-related factors (KC, IL-12/23p40, IL-17, G-CSF, and chlorotyrosine) that were also elevated in colon tissue. Chronic colitis serum biomarkers were specific to chronic colitis as they were not discriminatory for acute colitis.Conclusions/Significance: Immunological profiling revealed strikingly similar colon profiles, yet distinctly different serum profiles for acute and chronic colitis. Neutrophil- and Th17-related factors were identified as predictive serum biomarkers of chronic colitis, but not acute colitis, despite their presence in colitic tissue of both diseases thereby demonstrating the utility of mathematical modeling for identifying disease-associated serum biomarkers.</p
Multivariate Modeling Identifies Neutrophil- and Th17-Related Factors as Differential Serum Biomarkers of Chronic Murine Colitis
Diagnosis of chronic intestinal inflammation, which characterizes inflammatory bowel disease (IBD), along with prediction of disease state is hindered by the availability of predictive serum biomarker. Serum biomarkers predictive of disease state will improve trials for therapeutic intervention, and disease monitoring, particularly in genetically susceptible individuals. Chronic inflammation during IBD is considered distinct from infectious intestinal inflammation thereby requiring biomarkers to provide differential diagnosis. To address whether differential serum biomarkers could be identified in murine models of colitis, immunological profiles from both chronic spontaneous and acute infectious colitis were compared and predictive serum biomarkers identified via multivariate modeling.Discriminatory multivariate modeling of 23 cytokines plus chlorotyrosine and nitrotyrosine (protein adducts from reactive nitrogen species and hypochlorite) in serum and tissue from two murine models of colitis was performed to identify disease-associated biomarkers. Acute C. rodentium-induced colitis in C57BL/6J mice and chronic spontaneous Helicobacter-dependent colitis in TLR4(-/-) x IL-10(-/-) mice were utilized for evaluation. Colon profiles of both colitis models were nearly identical with chemokines, neutrophil- and Th17-related factors highly associated with intestinal disease. In acute colitis, discriminatory disease-associated serum factors were not those identified in the colon. In contrast, the discriminatory predictive serum factors for chronic colitis were neutrophil- and Th17-related factors (KC, IL-12/23p40, IL-17, G-CSF, and chlorotyrosine) that were also elevated in colon tissue. Chronic colitis serum biomarkers were specific to chronic colitis as they were not discriminatory for acute colitis.Immunological profiling revealed strikingly similar colon profiles, yet distinctly different serum profiles for acute and chronic colitis. Neutrophil- and Th17-related factors were identified as predictive serum biomarkers of chronic colitis, but not acute colitis, despite their presence in colitic tissue of both diseases thereby demonstrating the utility of mathematical modeling for identifying disease-associated serum biomarkers
Rapid and efficient generation of regulatory T cells to commensal antigens in the periphery
SummaryCommensal bacteria shape the colonic regulatory T (Treg) cell population required for intestinal tolerance. However, little is known about this process. Here, we use the transfer of naive commensal-reactive transgenic T cells expressing colonic Treg T cell receptors (TCRs) to study peripheral Treg (pTreg) cell development in normal hosts. We found that T cells were activated primarily in the distal mesenteric lymph node. Treg cell induction was rapid, generating >40% Foxp3+ cells 1 week after transfer. Contrary to prior reports, Foxp3+ cells underwent the most cell divisions, demonstrating that pTreg cell generation can be the dominant outcome from naive T cell activation. Moreover, Notch2-dependent, but not Batf3-dependent, dendritic cells were involved in Treg cell selection. Finally, neither deletion of the conserved nucleotide sequence 1 (CNS1) region in Foxp3 nor blockade of TGF-β (transforming growth factor-β)-receptor signaling completely abrogated Foxp3 induction. Thus, these data show that pTreg cell selection to commensal bacteria is rapid, is robust, and may be specified by TGF-β-independent signals
The Wiskott-Aldrich syndrome protein is required for the function of CD4+CD25+Foxp3+ regulatory T cells
The Wiskott-Aldrich syndrome, a primary human immunodeficiency, results from defective expression of the hematopoietic-specific cytoskeletal regulator Wiskott-Aldrich syndrome protein (WASP). Because CD4+CD25+Foxp3+ naturally occurring regulatory T (nTreg) cells control autoimmunity, we asked whether colitis in WASP knockout (WKO) mice is associated with aberrant development/function of nTreg cells. We show that WKO mice have decreased numbers of CD4+CD25+Foxp3+ nTreg cells in both the thymus and peripheral lymphoid organs. Moreover, we demonstrate that WKO nTreg cells are markedly defective in both their ability to ameliorate the colitis induced by the transfer of CD45RBhi T cells and in functional suppression assays in vitro. Compared with wild-type (WT) nTreg cells, WKO nTreg cells show significantly impaired homing to both mucosal (mesenteric) and peripheral sites upon adoptive transfer into WT recipient mice. Suppression defects may be independent of antigen receptor–mediated actin rearrangement because both WT and WKO nTreg cells remodeled their actin cytoskeleton inefficiently upon T cell receptor stimulation. Preincubation of WKO nTreg cells with exogenous interleukin (IL)-2, combined with antigen receptor–mediated activation, substantially rescues the suppression defects. WKO nTreg cells are also defective in the secretion of the immunomodulatory cytokine IL-10. Overall, our data reveal a critical role for WASP in nTreg cell function and implicate nTreg cell dysfunction in the autoimmunity associated with WASP deficiency
Regional Mucosa-Associated Microbiota Determine Physiological Expression of TLR2 and TLR4 in Murine Colon
Many colonic mucosal genes that are highly regulated by microbial signals are differentially expressed along the rostral-caudal axis. This would suggest that differences in regional microbiota exist, particularly mucosa-associated microbes that are less likely to be transient. We therefore explored this possibility by examining the bacterial populations associated with the normal proximal and distal colonic mucosa in context of host Toll-like receptors (TLR) expression in C57BL/6J mice housed in specific pathogen-free (SPF) and germ-free (GF) environments. 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis revealed significant differences in the community structure and diversity of the mucosa-associated microbiota located in the distal colon compared to proximal colon and stool, the latter two clustering closely. Differential expression of colonic TLR2 and TLR4 along the proximal-distal axis was also found in SPF mice, but not in GF mice, suggesting that enteric microbes are essential in maintaining the regional expression of these TLRs. TLR2 is more highly expressed in proximal colon and decreases in a gradient to distal while TLR4 expression is highest in distal colon and a gradient of decreased expression to proximal colon is observed. After transfaunation in GF mice, both regional colonization of mucosa-associated microbes and expression of TLRs in the mouse colon were reestablished. In addition, exposure of the distal colon to cecal (proximal) microbiota induced TLR2 expression. These results demonstrate that regional colonic mucosa-associated microbiota determine the region-specific expression of TLR2 and TLR4. Conversely, region-specific host assembly rules are essential in determining the structure and function of mucosa-associated microbial populations. We believe this type of host-microbial mutualism is pivotal to the maintenance of intestinal and immune homeostasis
Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis
The gastrointestinal (GI) tract contains much of the body’s serotonin (5-hydroxytryptamine, 5-HT), but mechanisms controlling the metabolism of gut-derived 5-HT remain unclear. Here, we demonstrate that the microbiota plays a critical role in regulating host 5-HT. Indigenous spore-forming bacteria (Sp) from the mouse and human microbiota promote 5-HT biosynthesis from colonic enterochromaffin cells (ECs), which supply 5-HT to the mucosa, lumen, and circulating platelets. Importantly, microbiota-dependent effects on gut 5-HT significantly impact host physiology, modulating GI motility and platelet function. We identify select fecal metabolites that are increased by Sp and that elevate 5-HT in chromaffin cell cultures, suggesting direct metabolic signaling of gut microbes to ECs. Furthermore, elevating luminal concentrations of particular microbial metabolites increases colonic and blood 5-HT in germ-free mice. Altogether, these findings demonstrate that Sp are important modulators of host 5-HT and further highlight a key role for host-microbiota interactions in regulating fundamental 5-HT-related biological processes
Extensively hydrolyzed casein formula alone or with L. rhamnosus GG reduces β-lactoglobulin sensitization in mice
Background: Extensively hydrolyzed casein formula (EHCF) has been proposed for the prevention and is commonly used for the treatment of cow's milk allergy (CMA). The addition of the probiotic Lactobacillus rhamnosus GG (LGG) to EHCF may induce faster acquisition of tolerance to cow's milk. The mechanisms underlying this effect are largely unexplored. We investigated the effects of EHCF alone or in combination with LGG on β-lactoglobulin (BLG) sensitization in mice. Methods: Three-week-old C3H/HeOuJ mice were sensitized by oral administration of BLG using cholera toxin as adjuvant at weekly intervals for 5 weeks (sensitization period). Two experimental phases were conducted: (i) EHCF or EHCF+LGG given daily, starting 2 weeks before the sensitization period and then given daily for 5 weeks and (ii) EHCF or EHCF+LGG given daily for 4 weeks, starting 1 week after the sensitization period. Diet free of cow's milk protein was used as control. Acute allergic skin response, anaphylactic symptom score, body temperature, intestinal permeability, anti-BLG serum IgE, and interleukin (IL)-4, IL-5, IL-10, IL-13, IFN-γ mRNA expression were analyzed. Peptide fractions of EHCF were characterized by reversed-phase (RP)-HPLC, MALDI-TOF mass spectrometry, and nano-HPLC/ESI-MS/MS. Results: Extensively hydrolyzed casein formula administration before or after BLG-induced sensitization significantly reduced acute allergic skin reaction, anaphylactic symptom score, body temperature decrease, intestinal permeability increase, IL-4, IL-5, IL-13, and anti-BLG IgE production. EHCF increased expression of IFN-γ and IL-10. Many of these effects were significantly enhanced by LGG supplementation. The peptide panels were similar between the two study formulas and contained sequences that could have immunoregulatory activities. Conclusions: The data support dietary intervention with EHCF for CMA prevention and treatment through a favorable immunomodulatory action. The observed effects are significantly enhanced by LGG supplementation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Lt
Immunologic Responses to Vibrio cholerae in Patients Co-Infected with Intestinal Parasites in Bangladesh
Vibrio cholerae causes cholera, a severe diarrhea that may lead to fatal dehydration if not treated. Cholera occurs mostly in impoverished areas where there is poor sanitation and intestinal parasites are also common. However, little is known about the relationship between intestinal parasites and cholera. To learn about how parasites affect the immune response to Vibrio cholerae, this article describes 361 patients with cholera, including 53 who had intestinal parasitic infection. We found that cholera patients with parasitic worms had decreased antibody response to cholera toxin. The decrease was greatest in IgA antibodies, which are secreted in the intestine. However, patients with worm infection did not have a difference in their immune response to lipopolysaccharide, a sugar-based molecule that is important for immunity. These different effects on the immune response to cholera toxin and lipopolysaccharide could be explained by the effect of parasitic infection on CD4+ T cells, a type of cell that influences the development of the antibody response to proteins such as cholera toxin but may not always influence the response to sugar-based molecules. The finding that worm infection is associated with decreased immune responses to cholera provides an additional reason for deworming in cholera-endemic areas
Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.
Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut
- …