10 research outputs found

    Tumor-Associated Macrophage (TAM) and Angiogenesis in Human Colon Carcinoma

    Get PDF
    AIM: This study aimed to clarify how macrophages affect prognosis in cancer colon and their association with tumor angiogenesis.MATERIAL AND METHODS: Forty four biopsies of colon carcinoma and 15 of benign adenomatous polyps were investigated for macrophages infiltration and microvessels density using immunohistochemistry and image morphometric analysis. Macrophages and blood vessels were stained immunohistochemically by CD68 and F-VIII markers respectively. The morphometric analysis was carried out on the immunohistochemically stained slides using the Leica Qwin 500 Image Analyzer. Both of macrophages infiltration and microvessels density were correlated with histological tumor grade, stage and lymph node metastases and were correlated with each others.RESULTS: Macrophage infiltration was significantly higher in malignant cases than in benign polyps. High macrophage infiltration and hypervascularity were significantly correlated with T-staging and lymph nodes metastasis. A significant correlation was found between macrophage infiltration and microvessels densitie in malignant tumors where hypervascularity was significantly correlated with high macrophages infiltration.CONCLUSION: The significant correlation between macrophage infiltration and tumor angiogenesis suggests an interaction between macrophages and cancer cells stimulating microvessels formation, tumor invasion and metastasis in colon cancer. We recommend that macrophages infiltration should be evaluated to investigate their clinical value in development of individualized therapeutic regimens for management of colon carcinoma

    Histopathological and immunohistochemical characteristics of gastrointestinal stromal tumor

    No full text
    Gastrointestinal stromal tumor (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract with stomach being the commonest site. These mesenchymal neoplasms account for only about 1% of all primary malignant neoplasms of the gastrointestinal tract. These mesenchymal neoplasms belong to a group of tumors known as the connective tissue cancer group. GISTs are recognized to start from the interstitial cells of Cajal or their stem cell precursors. The natural evolution of these neoplasms is variable. Studies on GISTs have revealed molecular genetics and histopathological features that lead to molecular abnormality-based classification, diagnosis, and treatment. On the contrary, an increasing awareness of risk stratification is important to highlight the parameters that identify the biologic behavior based on recurrence or metastasis. This review aimed to study by histopathological and immunohistochemical tests for accurate diagnosis and differentiating GISTs from other tumors with the same location. In addition, molecular genetic understanding was necessary to determine the treatment approaches and identify patients who benefit from adjuvant therapy

    Microsatellite instability screening in colorectal carcinoma: immunohistochemical analysis of MMR proteins in correlation with clinicopathological features and Ki-67 protein expression

    No full text
    Abstract Background Defects in mismatch repair (MMR) system or microsatellite instability (MSI) and detected in colorectal carcinoma (CRC), both in sporadic and more frequently in hereditary cases. Immunohistochemistry (IHC) is the most frequent method for MMR protein deficiency screening in CRCs. In this study, we aimed to evaluate immunohistochemical expression of MMR and Ki-67 in colorectal carcinoma with clinicopathological features. Methods In this study, we evaluated the immunohistochemical expression of MMR proteins including MSH6, MSH2, PMS2 and MLH1 in 50 resection materials with colorectal carcinoma. Their expression is correlated with clinicopathological features of patients together, with Ki-67 protein expression in attempt to screen the most significant predictor of microsatellite instability. Results Of the 50 cases of cancer colon, 28% were classified as MSI-H, 20% were MSI-L, and 52% were MSS. The most frequent pattern in MSI-H tumors was concurrent loss of MSH6 and PMS2 proteins. There was a significant correlation between MMR protein expression pattern with tumor size, grade, T-classification and stage (0.015, 0.0515, 0.0162 and 0.0391), respectively. MSI-H tumors were located more frequently in right colon, early TNM stage and poorly differentiated and infrequent distant metastases. There was a significant correlation between Ki-67 high expression and MSI status patterns in their common biological aspects distinct from MSI-negative tumors. Conclusions Mismatch repair defective colorectal carcinoma has characteristics clinicopathological features different from MSS tumors. The role of immunohistochemistry (IHC) for MSI evaluation is the easiest and effective way for evaluation of MMR deficiency in colorectal carcinoma

    Effect of ZnO Nanofiller on Structural and Electrochemical Performance Improvement of Solid Polymer Electrolytes Based on Polyvinyl Alcohol–Cellulose Acetate–Potassium Carbonate Composites

    No full text
    In this study, a solution casting method was used to prepare solid polymer electrolytes (SPEs) based on a polymer blend comprising polyvinyl alcohol (PVA), cellulose acetate (CA), and potassium carbonate (K2CO3) as a conducting salt, and zinc oxide nanoparticles (ZnO-NPs) as a nanofiller. The prepared electrolytes were physicochemically and electrochemically characterized, and their semi-crystalline nature was established using XRD and FESEM. The addition of ZnO to the polymer–salt combination resulted in a substantial increase in ionic conductivity, which was investigated using impedance analysis. The size of the semicircles in the Cole–Cole plots shrank as the amount of nanofiller increased, showing a decrease in bulk resistance that might be ascribed to an increase in ions due to the strong action of the ZnO-NPs. The sample with 10 wt % ZnO-NPs was found to produce the highest ionic conductivity, potential window, and lowest activation energy (Ea) of 3.70 × 10–3 Scm–1, 3.24 V, and 6.08 × 10–4 eV, respectively. The temperature–frequency dependence of conductivity was found to approximately follow the Arrhenius model, which established that the electrolytes in this study are thermally activated. Hence, it can be concluded that, based on the improved conductivity observed, SPEs based on a PVA-CA-K2CO3/ZnO-NPs composite could be applicable in all-solid-state energy storage devices

    Privacy-Preserving Mobility Model and Optimization-Based Advanced Cluster Head Selection (P2O-ACH) for Vehicular Ad Hoc Networks

    No full text
    In vehicular ad hoc networks (VANETs), due to the fast-moving mobile nodes, the topology changes frequently. This dynamically changing topology produces congestion and instability. To overcome this issue, privacy-preserving optimization-based cluster head selection (P2O-ACH) is proposed. One of the major drawbacks analyzed in the earlier cluster-based VANETs is that it creates a maximum number of clusters for communication that leads to an increase in energy consumption which reflects in a degradation of the performance. In this paper, enhanced rider optimization algorithm (ROA)-based CH selection is performed and that optimally selects the CH so that effective clusters are created. By analyzing this, the behavior of the bypass rider’s CH is chosen, and this forms the optimized clusters, and during the process of transmission, privacy-preserving mobility patterns are used to secure the network from all kinds of malfunctions which are performed by the new vehicle blending and migration process. The proposed P2O-ACH is simulated using NS-2, and for performance analysis, two scenarios are taken, which contain a varying number of vehicles and varying speeds. For a varying number of vehicles and speeds, the considered parameters are energy efficiency, energy consumption, network lifetime, packet delivery ratio, packet loss, network latency, network throughput, and routing overhead. From the results, it is understood that the proposed method performed better when compared with earlier work, such as GWO-CH, ACO-SCRS, and QMM-VANET

    Bio-Inspired Dynamic Trust and Congestion-Aware Zone-Based Secured Internet of Drone Things (SIoDT)

    No full text
    The Internet of Drone Things (IoDT) is a trending research area where drones are used to gather information from ground networks. In order to overcome the drawbacks of the Internet of Vehicles (IoV), such as congestion issues, security issues, and energy consumption, drones were introduced into the IoV, which is termed drone-assisted IoV. Due to the unique characteristics of the IoV, such as dynamic mobility and unsystematic traffic patterns, the performance of the network is reduced in terms of delay, energy consumption, and overhead. Additionally, there is the possibility of the existence of various attackers that disturb the traffic pattern. In order to overcome this drawback, the drone-assisted IoV was developed. In this paper, the bio-inspired dynamic trust and congestion-aware zone-based secured Internet of Drone Things (BDTC-SIoDT) is developed, and it is mainly divided into three sections. These sections are dynamic trust estimation, congestion-aware community construction, and hybrid optimization. Initially, through the dynamic trust estimation process, triple-layer trust establishment is performed, which helps to protect the network from all kinds of threats. Secondly, a congestion-aware community is created to predict congestion and to avoid it. Finally, hybrid optimization is performed with the combination of ant colony optimization (ACO) and gray wolf optimization (GWO). Through this hybrid optimization technique, overhead occurs during the initial stage of transmission, and the time taken by vehicles to leave and join the cluster is reduced. The experimentation is performed using various threats, such as flooding attack, insider attack, wormhole attack, and position falsification attack. To analyze the performance, the parameters that are considered are energy efficiency, packet delivery ratio, routing overhead, end-to-end delay, packet loss, and throughput. The outcome of the proposed BDTC-SIoDT is compared with earlier research works, such as LAKA-IOD, NCAS-IOD, and TPDA-IOV. The proposed BDTC-SIoDT achieves high performance when compared with earlier research works

    Innovative Methylcellulose-Polyvinyl Pyrrolidone-Based Solid Polymer Electrolytes Impregnated with Potassium Salt: Ion Conduction and Thermal Properties

    No full text
    In this research, innovative green and sustainable solid polymer electrolytes (SPEs) based on plasticized methylcellulose/polyvinyl pyrrolidone/potassium carbonate (MC/PVP/K2CO3) were examined. The MC/PVP/K2CO3 SPE system with five distinct ethylene carbonate (EC) concentrations as a plasticizer was successfully designed. Frequency-dependent conductivity plots were used to investigate the conduction mechanism of the SPEs. Electrochemical potential window stability and the cation transfer number of the SPEs were studied via linear sweep voltammetry (LSV) and transference number measurement (TNM), respectively. Additionally, the structural behavior of the SPEs was analyzed using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), X-ray diffractometry (XRD), and differential scanning calorimetry (DSC) techniques. The SPE film complexed with 15 wt.% EC measured a maximum conductivity of 3.88 × 10−4 Scm−1. According to the results of the transference number examination, cations that record a transference number of 0.949 are the primary charge carriers. An EDLC was fabricated based on the highest conducting sample that recorded a specific capacitance of 54.936 Fg−1 at 5 mVs−1

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    No full text
    © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study—a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58–5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23–0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research
    corecore