3 research outputs found

    Enrichment of periodontal pathogens from the biofilms of healthy adults

    Get PDF
    Periodontitis is associated with shifts in the balance of the subgingival microbiome. Many species that predominate in disease have not been isolated from healthy sites, raising questions as to the origin of these putative pathogens. The study aim was to determine whether periodontal pathogens could be enriched from pooled saliva, plaque and tongue samples from dentally-healthy adult volunteers using growth media that simulate nutritional aspects of the inflamed subgingival environment. The microbiome was characterised before and after enrichment using established metagenomic approaches, and the data analysed bioinformatically to identify major functional changes. After three weeks, there was a shift from an inoculum in which Streptococcus, Haemophilus, Neisseria, Veillonella and Prevotella species predominated to biofilms comprising an increased abundance of taxa implicated in periodontitis, including Porphyromonas gingivalis, Fretibacterium fastidiosum, Filifactor alocis, Tannerella forsythia, and several Peptostreptococcus and Treponema spp., with concomitant decreases in health-associated species. Sixty-four species were present after enrichment that were undetectable in the inoculum, including Jonquetella anthropi, Desulfovibrio desulfuricans and Dialister invisus. These studies support the Ecological Plaque Hypothesis, providing evidence that putative periodontopathogens are present in health at low levels, but changes to the subgingival nutritional environment increase their competitiveness and drive deleterious changes to biofilm composition

    Modeling Normal and Dysbiotic Subgingival Microbiomes: Effect of Nutrients

    No full text
    Screening for microbiome modulators requires availability of a high-throughput in vitro model that replicates subgingival dysbiosis and normobiosis, with a tool to measure microbial dysbiosis. Here, we tested various formulations to grow health- and periodontitis-associated subgingival microbiomes in parallel, and we describe a new subgingival dysbiosis index. Subgingival plaque samples pooled from 5 healthy subjects and, separately, 5 subjects with periodontitis were used to inoculate a Calgary Biofilm Device containing saliva-conditioned, hydroxyapatite-coated pegs. Microbiomes were grown for 7 d on either nutrient-rich media—including a modification of SHI medium, brain-heart infusion (BHI) supplemented with hemin and vitamin K, and a blend of SHI and BHI, each at 3 sucrose concentrations (0%, 0.05% and 0.1%)—or nutrient-limited media (saliva with 5%, 10%, or 20% inactivated human serum). The microbiomes were assessed for biomass, viability, and 16S rRNA profiles. In addition to richness and diversity, a dysbiosis index was calculated as the ratio of the sum of relative abundances of disease-associated species to that of health-associated species. The supplemented BHI and blend of SHI and BHI resulted in the highest biomass, whereas saliva-serum maximized viability. Distinct groups of bacteria were enriched in the different media. Regardless of medium type, the periodontitis-derived microbiomes showed higher species richness and alpha diversity and clustered with their inoculum separate from the health-derived microbiomes. Microbiomes grown in saliva-serum showed the highest species richness and the highest similarity to the clinical inocula in both health and disease. However, inclusion of serum reduced alpha diversity and increased dysbiosis in healthy microbiomes in a dose-dependent manner, mainly due to overenrichment of Porphyromonas species. The modification of SHI stood second in terms of species richness and diversity but resulted in low biomass and viability and significantly worsened dysbiosis in the periodontitis-derived microbiomes. Overall, saliva with 5% human serum was optimal for replicating subgingival microbiomes from health and disease
    corecore