9 research outputs found

    Recurrent copy number alterations in low-grade and anaplastic pleomorphic xanthoastrocytoma with and without BRAF V600E mutation

    No full text
    Pleomorphic xanthoastrocytoma (PXA) is a rare localized glioma characterized by frequent BRAF V600E mutation and CDKN2A/B deletion. We explored the association of copy-number variants (CNVs) with BRAF mutations, tumor grade, and patient survival in a cohort of 41 PXA patients using OncoScan chromosomal microarray. Primary resection specimens were available in 38 cases, including 24 PXA and 14 anaplastic PXA (A-PXA), 23 BRAF V600E mutant tumors (61%). CNVs were identified in all cases and most frequently involved chromosome 9 with homozygous CDKN2A/B deletion (n = 33, 87%), a higher proportion than previously detected by comparative genomic hybridization (50%\u201360%) (37). CDKN2A/B deletion was present in similar proportion of PXA (83%), A-PXA (93%), BRAF V600E (87%), and wild-type (87%) tumors. Whole chromosome gains/losses were frequent, including gains +7 (n = 15), +2 (n = 11), +5 (n = 10), +21 (n = 10), +20 (n = 9), +12 (n = 8), +15 (n = 8), and losses 1222 (n = 11), 1214 (n = 7), 1213 (n = 5). Losses and copy-neutral loss of heterozygosity were significantly more common in A-PXA, involving chromosomes 22 (P = 0.009) and 14 (P = 0.03). Amplification of 8p and 12q was identified in a single tumor. Histologic grade was a robust predictor of overall survival (P = 0.003), while other copy-number changes, including CDKN2A/B deletion, did not show significant association with survival. Distinct histologic patterns of anaplasia included increased mitotic activity in an otherwise classic PXA or associated with small cell, fibrillary, or epithelioid morphology, with loss of SMARCB1 expression in one case. In 10 cases, matched specimens were compared, including A-PXA with areas of distinct low- and high-grade morphology (n = 2), matched primary/tumor recurrence (n = 7), or both (n = 1). Copy-number changes on recurrence/anaplastic transformation were complex and highly variable, from nearly identical profiles to numerous copy-number changes. Overall, we confirm CDKN2A/B deletion as key a feature of PXA not associated with tumor grade or BRAF mutation, but central to the underlying genetics of PXA

    Physiological characters imparting resistance to biotic and abiotic stresses in sugarcane

    No full text

    Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma

    No full text
    In cancer, recurrent somatic single-nucleotide variants—which are rare in most paediatric cancers—are confined largely to protein-coding genes1–3. Here we report highly recurrent hotspot mutations (r.3A>G) of U1 spliceosomal small nuclear RNAs (snRNAs) in about 50% of Sonic hedgehog (SHH) medulloblastomas. These mutations were not present across other subgroups of medulloblastoma, and we identified these hotspot mutations in U1 snRNA in only <0.1% of 2,442 cancers, across 36 other tumour types. The mutations occur in 97% of adults (subtype SHHδ) and 25% of adolescents (subtype SHHα) with SHH medulloblastoma, but are largely absent from SHH medulloblastoma in infants. The U1 snRNA mutations occur in the 5′ splice-site binding region, and snRNA-mutant tumours have significantly disrupted RNA splicing and an excess of 5′ cryptic splicing events. Alternative splicing mediated by mutant U1 snRNA inactivates tumour-suppressor genes (PTCH1) and activates oncogenes (GLI2 and CCND2), and represents a target for therapy. These U1 snRNA mutations provide an example of highly recurrent and tissue-specific mutations of a non-protein-coding gene in cancer

    Recent Trends in Chiral Separation-A Collective Paradigm of Selected Chiral Impurities

    No full text
    corecore