16 research outputs found

    Genetic analysis of foot-and-mouth disease virus serotype A of Indian origin and detection of positive selection and recombination in leader protease- and capsid-coding regions

    Get PDF
    The leader protease (Lpro) and capsid-coding sequences (P1) constitute approximately 3 kb of the foot-and-mouth disease virus (FMDV). We studied the phylogenetic relationship of 46 FMDV serotype A isolates of Indian origin collected during the period 1968-2005 and also eight vaccine strains using the neighbour-joining tree and Bayesian tree methods. The viruses were categorized under three major groups-Asian, Euro-South American and European. The Indian isolates formed a distinct genetic group among the Asian isolates. The Indian isolates were further classified into different genetic subgroups ( < 5% divergence). Post-1995 isolates were divided into two subgroups while a few isolates which originated in the year 2005 from Andhra Pradesh formed a separate group. These isolates were closely related to the isolates of the 1970s. The FMDV isolates seem to undergo reverse mutation or convergent evolution wherein sequences identical to the ancestors are present in the isolates in circulation. The eight vaccine strains included in the study were not related to each other and belonged to different genetic groups. Recombination was detected in the Lpro region in one isolate (A IND 20/82) and in the VP1 coding 1D region in another isolate (A RAJ 21/96). Positive selection was identified at aa positions 23 in the Lpro (P < 0.05; 0.046∗) and at aa 171 in the capsid protein VP1 (P < 0.01; 0.003∗∗)

    Emergency foot-and-mouth disease vaccines a Malaysia 97 and A<sub>22</sub> Iraq 64 offer good protection against heterologous challenge with a variant serotype a ASIA/G-IX/SEA-97 lineage virus

    Get PDF
    The continuous emergence of foot-and-mouth disease virus (FMDV) serotype A variants in South East Asia is of concern for international FMDV antigen banks, especially when in vitro tests predict a low antigenic match. A vaccination-challenge study was performed by using two emergency FMDV vaccines with A22 Iraq 64 (A22 IRQ) and A Malaysia 97 (A MAY 97) strains, against challenge with a variant strain of FMDV A/Asia/G-IX/SEA-97 lineage at 7- and 21-day post-vaccination (dpv). At 7 dpv, three of five female calves vaccinated with A MAY 97 and four of five vaccinated with A22 IRQ did not show lesions on the feet and were considered protected, while at 21 dpv all five calves were protected with each vaccine, indicating equal efficacy of both vaccine strains. Calves were protected despite relatively low heterologous neutralizing antibody titers to the challenge virus at the time of challenge. All the calves developed antibodies to the non-structural proteins, most likely due to the direct intradermolingual (IDL) inoculation. Only one calf from the A MAY 97-7 group had infectious virus in the serum 1–3-day post-challenge (dpc), while no virus could be isolated from the serum of cattle challenged on 21 dpv. The virus could be isolated from the oral swabs of all calves, 1–7 dpc with viral RNA detected 1–10 dpc. Nasal swabs were positive for virus 1–6 dpc in a small number of calves. The time between vaccination and infection did not have an impact on the number of animals with persistent infection, with almost all the animals showing viral RNA in their oro-pharyngeal fluid (probang) samples up to 35 dpc. Despite the poor in vitro matching data and field reports of vaccine failures, this study suggests that these vaccine strains should be effective against this new A/Asia/G/SEA-97 variant, provided they are formulated with a high antigen dose.</p

    Genetic characterization of Indian type O FMD virus 3A region in context with host cell preference

    No full text
    The 3A region of foot-and-mouth disease virus has been implicated in host range and virulence. For example, amino acid deletions in the porcinophilic strain (O/TAW/97) at 93-102 aa of the 153 codons long 3A protein have been recognized as the determinant of species specificity. In the present study, 18 type O FMDV isolates from India were adapted in different cell culture systems and the 3A sequence was analyzed. These isolates had complete 3A coding sequence (153 aa) and did not exhibit growth restriction in cells based on species of origin. The 3A region was found to be highly conserved at N-terminal half (1-75 aa) but exhibited variability or substitutions towards C-terminal region (80-153). Moreover the amino acid substitutions were more frequent in recent Indian buffalo isolates but none of the Indian isolates showed deletion in 3A protein, which may be the reason for the absence of host specificity in vitro. Further inclusive analysis of 3A region will reveal interesting facts about the variability of FMD virus 3A region in an endemic environment

    Fast Dissolving Tablets of Fexofenadine HCl by Effervescent Method

    No full text
    In the present work, fast dissolving tablets of fexofenadine HCl were prepared by effervescent method with a view to enhance patient compliance. Three super-disintegrants viz., crospovidone, croscarmellose sodium and sodium starch glycolate along with sodium bicarbonate and anhydrous citric acid in different ratios were used and directly compressible mannitol (Pearlitol SD 200) to enhance mouth feel. The prepared batches of tablets were evaluated for hardness, friability, drug content uniformity and in vitro dispersion time. Based on the in vitro dispersion time (approximately 20 s), three formulations were tested for in vitro drug release pattern in pH 6.8 phosphate buffer, short-term stability at 40°/75% RH for 3 mo and drug-excipient interaction (IR spectroscopy). Among the three promising formulations, the formulation ECP3 containing 8% w/w of crospovidone and mixture of 24% w/w sodium bicarbonate 18% w/w of anhydrous citric acid emerged as the best (t50% 4 min) based on the in vitro drug release characteristics compared to conventional commercial tablet formulation (t50% 15 min). Short-term stability studies on the formulations indicated that there are no significant changes in drug content and in vitro dispersion time (P<0.05)

    Early protection in sheep against intratypic heterologous challenge with serotype O foot-and-mouth disease virus using high-potency, emergency vaccine

    Full text link
    In 2009-2011, spread of a serotype O foot-and-mouth disease virus (FMDV) belonging to the South East Asia topotype led to the culling of over 3.5 million cattle and pigs in Japan and Korea. The O1 Manisa vaccine (belonging to the Middle East-South Asian topotype) was used at high potency in Korea to limit the expansion of the outbreak. However, no data are available on the spread of this virus or the efficacy of the O1 Manisa vaccine against this virus in sheep. In this study, the early protection afforded with a high potency (&gt;6 PD50) FMD O1 Manisa vaccine against challenge with the O/SKR/2010 virus was tested in sheep. Sheep (n=8) were vaccinated 4 days prior to continuous direct-contact challenge with donor sheep. Donor sheep were infected with FMDV O/SKR/2010 by coronary band inoculation 24h prior to contact with the vaccinated animals, or unvaccinated controls (n=4). Three of the four control sheep became infected, two clinically. All eight O1 Manisa vaccinated sheep were protected from clinical disease. None had detectable antibodies to FMDV non-structural proteins (3ABC), no virus was isolated from nasal swabs, saliva or oro-pharyngeal fluid and none became carriers. Using this model of challenge, sheep were protected against infection as early as 4 days post vaccination

    Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep.

    No full text
    Foot-and-mouth disease virus (FMDV) is capable of infecting all cloven-hoofed domestic livestock species, including cattle, pigs, goats, and sheep. However, in contrast to cattle and pigs, the pathogenesis of FMDV in small ruminants has been incompletely elucidated. The objective of the current investigation was to characterize tissue- and cellular tropism of early and late stages of FMDV infection in sheep following three different routes of simulated natural virus exposure. Extensive post-mortem harvest of tissue samples at pre-determined time points during early infection (24 and 48 hours post infection) demonstrated that tissues specifically susceptible to primary FMDV infection included the paraepiglottic- and palatine tonsils, as well as the nasopharyngeal mucosa. Additionally, experimental aerosol inoculation of sheep led to substantial virus replication in the lungs at 24-48 hours post-inoculation. During persistent infection (35 days post infection), the paraepiglottic- and palatine tonsils were the only tissues from which infectious FMDV was recovered. This is strikingly different from cattle, in which persistent FMDV infection has consistently been located to the nasopharyngeal mucosa. Analysis of tissue sections by immunomicroscopy revealed a strict epithelial tropism during both early and late phases of infection as FMDV was consistently localized to cytokeratin-expressing epithelial cells. This study expands upon previous knowledge of FMDV pathogenesis in sheep by providing detailed information on the temporo-anatomic distribution of FMDV in ovine tissues. Findings are discussed in relation to similar investigations previously performed in cattle and pigs, highlighting similarities and differences in FMDV pathogenesis across natural host species

    Emergency FMD Serotype O Vaccines Protect Cattle against Heterologous Challenge with a Variant Foot-and-Mouth Disease Virus from the O/ME-SA/Ind2001 Lineage

    No full text
    Vaccination is one of the best approaches to control and eradicate foot-and-mouth disease (FMD). To achieve this goal, vaccines with inactivated FMD virus antigen in suitable adjuvants are being used in addition to other control measures. However, only a limited number of vaccine strains are commercially available, which often have a restricted spectrum of activity against the different FMD virus strains in circulation. As a result, when new strains emerge, it is important to measure the efficacy of the current vaccine strains against these new variants. This is important for countries where FMD is endemic but also for countries that hold an FMD vaccine bank, to ensure they are prepared for emergency vaccination. The emergence and spread of the O/ME-SA/Ind-2001 lineage of viruses posed a serious threat to countries with OIE-endorsed FMD control plans who had not reported FMD for many years. In vitro vaccine-matching results showed a poor match (r1-value < 0.3) with the more widely used vaccine strain O1 Manisa and less protection in a challenge test. This paper describes the use of the O3039 vaccine strain as an alternative, either alone or in combination with the O1 Manisa vaccine strain with virulent challenge by a O/ME-SA/Ind-2001d sub-lineage virus from Algeria (O/ALG/3/2014). The experiment included challenge at 7 days post-vaccination (to study protection and emergency use) and 21 days post-vaccination (as in standard potency studies). The results indicated that the O3039 vaccine strain alone, as well as the combination with O1 Manisa, is effective against this strain of the O/ME-SA/Ind/2001d lineage, offering protection from clinical disease even after 7 days post-vaccination with a reduction in viraemia and virus excretion

    Pan-serotype diagnostic for foot-and-mouth disease using the consensus antigen of nonstructural protein 3B

    Full text link
    An amino acid consensus sequence for the seven serotypes of foot-and-mouth disease virus (FMDV) nonstructural protein 3B, including all three contiguous repeats, and its use in the development of a pan-serotype diagnostic test for all seven FMDV serotypes are described. The amino acid consensus sequence of the 3B protein was determined from a multiple-sequence alignment of 125 sequences of 3B. The consensus 3B (c3B) protein was expressed as a soluble recombinant fusion protein with maltose-binding protein (MBP) using a bacterial expression system and was affinity purified using amylose resin. The MBP-c3B protein was used as the antigen in the development of a competition enzyme-linked immunosorbent assay (cELISA) for detection of anti-3B antibodies in bovine sera. The comparative diagnostic sensitivity and specificity at 47% inhibition were estimated to be 87.22% and 93.15%, respectively. Reactivity of c3B with bovine sera representing the seven FMDV serotypes demonstrated the pan-serotype diagnostic capability of this bioreagent. The consensus antigen and competition ELISA are described here as candidates for a pan-serotype diagnostic test for FMDV infection

    Protective effects of high-potency FMDV O<sub>1</sub> Manisa monovalent vaccine in cattle challenged with FMDV O/SKR/2010 at 7 or 4 days post vaccination

    No full text
    Serotype O foot-and-mouth disease (FMD) virus belonging to the SEA topotype continues to be a significant problem in the Eastern Asia region, with outbreaks in Japan and South Korea resulting in the culling of over 3.5 million cattle and pigs in recent years. High-potency O1 Manisa vaccine was previously shown to provide protection in cattle 21. days post vaccination (dpv) following challenge with a representative virus, O/SKR/2010. This study tested the ability of the O1 Manisa vaccine to protect cattle from infection and disease with the O/SKR/2010 virus within just 4 or 7. days post vaccination. The vaccine protected 50% of cattle from clinical disease when administered 7. days prior to challenge, but was not protective with just 4. days between vaccination and challenge. Viraemia was significantly reduced in animals challenged 7 dpv but not 4 dpv, compared to unvaccinated controls, however, there were no effects on the level of virus detected in nasal and oral secretions regardless of vaccination time. The level of neutralising antibodies detected in cattle challenged 7 dpv correlated with protection from clinical disease. All animals seroconverted to FMDV non-structural proteins, suggesting no sterile protection. An equal number of animals became persistently infected in both vaccine groups. The results indicated that high-potency O1 Manisa vaccine administered just 7. days prior to challenge should provide partial protection of cattle if an outbreak of O/SKR/2010, or related viruses, occurs, and would be useful to limit spread of FMDV when used in conjunction with other control measures
    corecore