11,077 research outputs found

    Modeling the behavior of elastic materials with stochastic microstructure

    Get PDF
    Even in the simple linear elastic range, the material behavior is not deterministic, but fluctuates randomly around some expectation values. The knowledge about this characteristic is obviously trivial from an experimentalist’s point of view. However, it is not considered in the vast majority of material models in which “only” deterministic behavior is taken into account. One very promising approach to the inclusion of stochastic effects in modeling of materials is provided by the Karhunen-Lo`eve expansion. It has been used, for example, in the stochastic finite element method, where it yields results of the desired kind, but unfortunately at drastically increased numerical costs. This contribution aims to propose a new ansatz that is based on a stochastic series expansion, but at the Gauß point level. Appropriate energy relaxation allows to derive the distribution of a synthesized stress measure, together with explicit formulas for the expectation and variance. The total procedure only needs negligibly more computation effort than a simple elastic calculation. We also present an outlook on how the original approach in [7] can be applied to inelastic material

    Modeling of a latent fault detector in a digital system

    Get PDF
    Methods of modeling the detection time or latency period of a hardware fault in a digital system are proposed that explain how a computer detects faults in a computational mode. The objectives were to study how software reacts to a fault, to account for as many variables as possible affecting detection and to forecast a given program's detecting ability prior to computation. A series of experiments were conducted on a small emulated microprocessor with fault injection capability. Results indicate that the detecting capability of a program largely depends on the instruction subset used during computation and the frequency of its use and has little direct dependence on such variables as fault mode, number set, degree of branching and program length. A model is discussed which employs an analog with balls in an urn to explain the rate of which subsequent repetitions of an instruction or instruction set detect a given fault

    Statistical Time Series Models of Pilot Control with Applications to Instrument Discrimination

    Get PDF
    A general description of the methodology used in obtaining the transfer function models and verification of model fidelity, frequency domain plots of the modeled transfer functions, numerical results obtained from an analysis of poles and zeroes obtained from z plane to s-plane conversions of the transfer functions, and the results of a study on the sequential introduction of other variables, both exogenous and endogenous into the loop are contained

    Application of laminar flow control to supersonic transport configurations

    Get PDF
    The feasibility and impact of implementing a laminar flow control system on a supersonic transport configuration were investigated. A hybrid laminar flow control scheme consisting of suction controlled and natural laminar flow was developed for a double-delta type wing planform. The required suction flow rates were determined from boundary layer stability analyses using representative wing pressure distributions. A preliminary design of structural modifications needed to accommodate suction through a perforated titanium skin was carried out together with the ducting and systems needed to collect, compress and discharge the suction air. The benefits of reduced aerodynamic drag were weighed against the weight, volume and power requirement penalties of suction system installation in a mission performance and sizing program to assess the net benefits. The study showed a feasibility of achieving significant laminarization of the wing surface by use of a hybrid scheme, leading to an 8.2 percent reduction in the cruise drag. This resulted in an 8.5 percent reduction in the maximum takeoff weight and a 12 percent reduction in the fuel burn after the inclusion of the LFC system installation penalties. Several research needs were identified for a resolution of aerodynamics, structural and systems issues before these potential benefits could be realized in a practical system

    Software reliability: Repetitive run experimentation and modeling

    Get PDF
    A software experiment conducted with repetitive run sampling is reported. Independently generated input data was used to verify that interfailure times are very nearly exponentially distributed and to obtain good estimates of the failure rates of individual errors and demonstrate how widely they vary. This fact invalidates many of the popular software reliability models now in use. The log failure rate of interfailure time was nearly linear as a function of the number of errors corrected. A new model of software reliability is proposed that incorporates these observations

    A Simplified Cellular Automaton Model for City Traffic

    Full text link
    We systematically investigate the effect of blockage sites in a cellular automaton model for traffic flow. Different scheduling schemes for the blockage sites are considered. None of them returns a linear relationship between the fraction of ``green'' time and the throughput. We use this information for a fast implementation of traffic in Dallas.Comment: 12 pages, 18 figures. submitted to Phys Rev

    Patterns in Illinois Educational School Data

    Full text link
    We examine Illinois educational data from standardized exams and analyze primary factors affecting the achievement of public school students. We focus on the simplest possible models: representation of data through visualizations and regressions on single variables. Exam scores are shown to depend on school type, location, and poverty concentration. For most schools in Illinois, student test scores decline linearly with poverty concentration. However Chicago must be treated separately. Selective schools in Chicago, as well as some traditional and charter schools, deviate from this pattern based on poverty. For any poverty level, Chicago schools perform better than those in the rest of Illinois. Selective programs for gifted students show high performance at each grade level, most notably at the high school level, when compared to other Illinois school types. The case of Chicago charter schools is more complex. In the last six years, their students' scores overtook those of students in traditional Chicago high schools.Comment: 9 pages, 6 figure
    corecore