2,117 research outputs found

    Near-Solar-Circle Method for Determination of the Galactic Constants

    Full text link
    We propose a method to determine the galactic constants R_0 (distance to the Galactic Center) and V_0 (rotation velocity of the Sun) from measurements of distances, radial velocities and proper motions of objects near the solar circle. This is a modification of the solar-circle method to a more practical observational method. We apply the method to determine R_0 using data from the literature with known distances and radial velocities, and obtain R_0 = 7.54 +/- 0.77 kpc.Comment: 5 pages, 4 figures, accepted for PASJ (Vol. 63 No. 5

    Two fast X-ray transients in archival Chandra data

    Get PDF
    We present the discovery of two new X-ray transients in archival Chandra data. The first transient, XRT 110103, occurred in January 2011 and shows a sharp rise of at least three orders of magnitude in count rate in less than 10 s, a flat peak for about 20 s and decays by two orders of magnitude in the next 60 s. We find no optical or infrared counterpart to this event in preexisting survey data or in an observation taken by the SIRIUS instrument at the Infrared Survey Facility 2.1 yr after the transient, providing limiting magnitudes of J>18.1, H>17.6 and Ks>16.3. This event shows similarities to the transient previously reported in Jonker et al. which was interpreted as the possible tidal disruption of a white dwarf by an intermediate mass black hole. We discuss the possibility that these transients originate from the same type of event. If we assume these events are related a rough estimate of the rates gives 1.4*10^5 per year over the whole sky with a peak 0.3-7 keV X-ray flux greater than 2*10^-10 erg cm^-2 s^-1 . The second transient, XRT 120830, occurred in August 2012 and shows a rise of at least three orders of magnitude in count rate and a subsequent decay of around one order of magnitude all within 10 s, followed by a slower quasi-exponential decay over the remaining 30 ks of the observation. We detect a likely infrared counterpart with magnitudes J=16.70+/-0.06, H=15.92+/-0.04 and Ks=15.37+/-0.06 which shows an average proper motion of 74+/-19 milliarcsec per year compared to archival 2MASS observations. The JHKs magnitudes, proper motion and X-ray flux of XRT 120830 are consistent with a bright flare from a nearby late M or early L dwarf.Comment: Accepted for publication in MNRAS, 6 pages, 5 figure

    Laboratory Measurements Of White Dwarf Photospheric Spectral Lines: H Beta

    Get PDF
    We spectroscopically measure multiple hydrogen Balmer line profiles from laboratory plasmas to investigate the theoretical line profiles used in white dwarf (WD) atmosphere models. X-ray radiation produced at the Z Pulsed Power Facility at Sandia National Laboratories initiates plasma formation in a hydrogen-filled gas cell, replicating WD photospheric conditions. Here we present time-resolved measurements of H beta and fit this line using different theoretical line profiles to diagnose electron density, n(e), and n = 2 level population, n2. Aided by synthetic tests, we characterize the validity of our diagnostic method for this experimental platform. During a single experiment, we infer a continuous range of electron densities increasing from n(e) similar to 4 to similar to 30 x 10(16) cm(-3) throughout a 120-ns evolution of our plasma. Also, we observe n(2) to be initially elevated with respect to local thermodynamic equilibrium (LTE); it then equilibrates within similar to 55 ns to become consistent with LTE. This supports our electrontemperature determination of T-e similar to 1.3 eV (similar to 15,000 K) after this time. At n(e) greater than or similar to 10(17) cm(-3), we find that computer-simulation-based line-profile calculations provide better fits (lower reduced chi(2)) than the line profiles currently used in the WD astronomy community. The inferred conditions, however, are in good quantitative agreement. This work establishes an experimental foundation for the future investigation of relative shapes and strengths between different hydrogen Balmer lines.Laboratory Directed Research and Development programUnited States Department of Energy DE-AC04-94AL85000, DE-SC0010623National Science Foundation DGE-1110007Astronom
    • …
    corecore