75 research outputs found

    Chemo-Sensitive Running Droplet

    Get PDF
    Chemical control of the spontaneous motion of a reactive oil droplet moving on a glass substrate under an aqueous phase is reported. Experimental results show that the self-motion of an oil droplet is confined on an acid-treated glass surface. The transient behavior of oil-droplet motion is also observed with a high-speed video camera. A mathematical model that incorporates the effect of the glass surface charge is built based on the experimental observation of oil-droplet motion. A numerical simulation of this mathematical model reproduced the essential features concerning confinement within a certain chemical territory of oil-droplet motion, and also its transient behavior. Our results may shed light on physical aspects of reactive spreading and a chemotaxis in living things.Comment: 17 pages, 10 figure

    Bifurcation of self-motion depending on the reaction order

    Get PDF
    As a simple example of an autonomous motor, the characteristic features of self-motion coupled with the acid-base reaction were numerically and experimentally investigated at the air/aqueous interface. Oscillatory and uniform motion were categorized as a function of the reaction order by numerical computations using a mathematical model that incorporates both the distribution of the surface active layer developed from a material particle as the driving force and the kinetics of the acid-base reaction. The nature of the self-motion was experimentally observed for a boat adhered to a camphor derivative with a mono- or di-carboxylic acid on a phosphate aqueous phase as the base. © the Owner Societies

    A simplified numerical model for evaluating sediment control by open-type sabo dams in the Joganji River basin

    Get PDF
    The present study proposes a method to estimate sediment runoff by introducing a dam function of the relationship between inflow sediment and sediment runoff through a slit dam. The model can process rainfall runoff, sediment yield and runoff of a mountainous basin, and the model is applied to the upper reaches of the Joganji River basin, which is known for its huge amount of sediment runoff and intense bed variation because of the sediment yield caused by the earthquake in 1858. The performance of the calculations of sediment control of the slit dam is evaluated by the model. The result indicates that sediment deposition is significantly changed by sediment runoff. The proposed method can be expected to evaluate sediment transport with sabo dams on a basin scale

    Long-term monitoring of sediment runoff for an active sediment control in Joganji River

    Get PDF
    There were huge sediment yielding and deposition due to debris flows by breaking natural landslide dams which were formed by earthquake in 1858 at upstream reach of Joganji River. Sediment transportation is still active by debris flow and flow with bedload due to rainfall, though a lot of erosion control dams have been constructed. Continuously measuring sediment runoff for long term along a main river is necessary to evaluate the propagation of sediment after the huge events for sediment management in the basin using well hydrological information. Appropriate tools are selected and applied to monitoring in the area managed by Tateyama Mountain Area Sabo Office along Joganji River, using a Reid-type bedload slot sampler, robust-type hydrophone and velocity meter on the bed for bedload and turbidity meter for washload. Monitored data is concentratedly collected at the office to apply risk management for sediment movement due to heavy rainfall and so on. Several typical data and problems to solved were shown because it passed around twenty years since sediment monitoring started, and those are reported in present study
    corecore