
Title
Bifurcation of helical wave from traveling wave (Conference
on Dynamics of Patterns in Reaction-Diffusion Systems and
the Related Topics)

Author(s) Ikeda, Tsutomu; Nagayama, Masaharu; Ikeda, Hideo

Citation 数理解析研究所講究録 (2003), 1330: 40-55

Issue Date 2003-07

URL http://hdl.handle.net/2433/43276

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39178502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Bifurcation of helical wave from traveling wave
Tsutomu Ikcda (Ryukoku Univ.), Masaharu Nagayama (Kyoto Univ.)

and Hideo Ikeda (Toyama Univ.)

1Introduction
In the present paper, we show that helical waves can bifurcate directly from
planar traveling waves by using asimple mathematical model.

Ahelical wave is observed in self-propagating $\mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}rightarrow \mathrm{t}\mathrm{e}\mathrm{m}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$ syntheses
(abbr. SHS), for instance. The SHS is asynthetic method creating refractory
ceramics, intermetalic compounds, composites and so on ([9]). One can create
avery-high-quality uniform product by the SHS when acombustion wave keeps
its profile and propagates at aconstant velocity, that is, combustion waves of
steady-state mode (planar traveling waves) bring high quality products. When
experimental conditions are changed, however, the planar traveling wave may
lose its stability and give place some non-uniform waves. Actually, aplanar
pulsating wave appears through the Hopf bifurcation of planar traveling wave.
We also observe awave that propagates in the form of spiral encircling the
cylindrical sample with several reaction spots ([9], [3] for instance). In the
present paper, this wave is called ahelical wave since it has been shown by our
$\mathrm{t}\mathrm{l}\iota \mathrm{r}\mathrm{e}\mathrm{e}$-dimensional numerical simulation ([11]) that the isothermal surface of the
wave has some wings and it helically rotates down as time passes on. It is also
observed that the number of wings is the same as that of reaction spots on the
cylindrical surface. Similar helical waves are observed also in propagation fronts
of polymerizations in laboratory ([13]) and they are obtained also by numerical
simulation of some autocatalytic reactions ([8]) as well as the SHS.

We have been interested in the existing condition of stable helical wave and
the transition process of wave patterns from steady-state mode to pulsating
mode $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ helical mode. For this purpose, we have studied the following
mathematical model exhibiting helical waves:

$\frac{\partial u}{\partial t}=\Delta u+vf(u;\mu)$ , $\frac{\partial v}{\partial t}=-vf(u;\mu)$ $(t>0, ox \in\Omega)$ , (1.1)

where the domain $\Omega$ is line $\mathrm{R}$ , tw0-dimensional band domain $\Omega_{2}=\{(x,y);x\in$

$\mathrm{R}$, $y\in(0, L)\}$ or athree-dimensional cylindrical domain $\Omega_{\mathrm{B}}=\{(x,y, z));x\in$

$\mathrm{R}$ , $y^{2}+z^{2}<R^{2}\}$ ($L$:band width, $R$:radius). The unknowns are $u(t,x)$ and
$v(t, oe)$ and areaction term $f(u;\mu)$ has some parameter $\mu$ . In the case of the
SHS, $u(t., x)$ and $v(t, x)$ stand for the non-dimensional temperature and reactant
concentration, respectively, and the reaction term is given as

$f(u; e_{app})=0(u <u_{*g}.)$ , $f(u;e_{app})= \exp(-\frac{e_{app}}{u+u_{0}})(u>u_{g})$ (1.2)
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by the use of the non-dimensional ignition temperature $u_{ig}$ , the non-dimensional
apparent activation energy $e_{app}$ and apositive constant $u_{0}$ . For the autocatalytic
reaction $m\mathrm{A}+\mathrm{B}\prec$ (m$+1)\mathrm{A}$ , $u(t,$x) and $v(t,$ox) correspond to the density of
Aand B, respectively, and

$f(u;m)=u^{m}$ . (1.3)

Through various numerical simulation ([11]) we have observed the following
propagation patterns:

1) aplanar traveling wave is stable when $e_{app}$ in (1.2) or $m$ in (1.3) is small,

2) for the one-dimensional problem, there appears apulsating wave via the Hopf
bifurcation of the traveling wave when the parameter becomes large,

3) if the parameter is set so that the pulsating wave exists stably for the $\mathrm{o}\mathrm{n}\mathrm{e}\sim$

dimensional problem, then the planar pulsating wave is still stable in the band
and cylindrical domains when $L$ and $R$ are small while ahelical wave takes the
place of the pulsating wave when $L$ and $R$ become larger.

The above observation indicates the existence of bifurcation branch connect-
ing aplanar traveling wave and ahelical wave, however, it is not clear whether
planar pulsating wave bifurcates first from aplanar traveling wave and ahelical
wave takes the place of aplanar pulsating wave when some parameter varies
or ahelical wave bifurcates directly from aplanar traveling wave under some
suitable condition.

Quite recently we have found asimilar behavior of solution for

$f(u_{ju_{*g})=\frac{1}{2}(1+\tanh\frac{u-u_{g}}{\delta})}.$ (1.4)

where $0<u_{ig}<1$ is aparameter and $0<\delta\ll 1$ is aconstant, Moreover, we
have succeeded in detailed mathematical analysis by adopting areaction term
given by astep function

$f(u;u_{g})=0(u<u_{ig})$ , $f(u;u_{\mathit{9}})=1(u>u_{ig})$ (1.3)

$(0<u_{ig}<1)$ . In the present paper, we report the following results obtained by
using the reaction-diffusion system (1.1) with (1.5):

(1) Astable helical wave call bifurcate directly from aplanar traveling wave.

(2) Even if atraveling wave is stable in $\mathrm{R}$ , the corresponding planar traveling
wave can be unstable in the band domain as well $\mathrm{a}\epsilon$ in tlle cylindrical
domain, and ahelical wave takes the place of planar traveling wave.

(3) There are no stable helical wave when $L$ is small or $R$ is small.

(4) Helical waves with different numbers of reaction spots can coexist stably
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2Planar traveling wave
In our mathematical analysis, we begin with

$\frac{\partial u}{\partial t}=\Delta u+\alpha\beta vf(u)$ , $\frac{\partial v}{\partial t}=d\Delta v$ -act$f(u)$ ($t>0$ , ae $\in\Omega$ ) (2.1)

where $\alpha$ and aare positive constants, and $f(u)$ is the same as $f(uju_{g})$ given by
(1.5). Since wc assume that achemical reaction propagates from left to right,
we subject the following boundary condition at $|x|arrow\infty$ :

$\lim_{x\prec-\infty}u(t,x)$ $=u_{-}, \lim_{\mathrm{r}arrow-\infty}v(t, x)$ $=0. \lim_{xarrow\infty}u(t.x)$ $=u_{+}, \lim_{xarrow\infty}v(t,x)$ $=v_{+}(2.2)$

on $u(t, ox)$ and $v(t, ox)$ , where positive constants $u_{+}$ , $v_{+}$ and u-satisfy

$u_{-}=u_{+}+\beta v_{+}$ , $u_{+}<u_{ig}<u_{-}$ (2.3)

because $u_{+}$ and $u$-respectively correspond to the temperature before and after
synthesis and $v_{+}$ means the initial concentration of reactant. The diffusion
coefficient $d$ is assumed to be non-negative in this paper. Terman [16] dealt
with the gas-solid combustion ([7]) where $f(u)$ is given by the Arrhenius kinetic
with high activation energy, and he discussed the stability of planar traveling
wave in the specific case of $d\cong 1$ . To return to our subject, reactants do not
diffuse in the gasless synthesis system. We can construct aplanar traveling wave
even if $d=0$ , however, we have few mathematical tool for studying its stability
in this case. For this reason, we will study the stability of planar traveling wave
and routes to ahelical wave in the case of $0<d\ll 1$ ([2] and [17]) and will try
to obtain results in the case of $d=0$ by letting $darrow \mathrm{O}$ .

Changing variables

$\tilde{t}=\alpha t$ , $\tilde{x}=\sqrt{\alpha}oe$ , $\tilde{u}=\frac{u-u_{+}}{\beta v_{+}}$ , $\tilde{v}=\frac{v}{v_{+}}$

and denoting $\overline{t},\tilde{x},\tilde{u},\tilde{v}$ and $\frac{u_{ig}-u_{+}}{\beta v_{+}}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}1\mathrm{y}$ by $t$ , $x$ , $u$ , $v$ and $uig$ again,
we rewrite (2.1), (1.5), (2.2), (2.3) as

$\frac{\partial u}{\partial t}=\Delta u+vf(u)$ , $\frac{\partial v}{\partial t}=d\Delta v-vf(u)$ $(t>0, x \in\Omega)$

$f(u)=0(u<u_{ig})$ , $f(u)=1(u>u_{*g}.)$ , $0<u_{*g}.<1$ (2.4)

$\lim_{\mathrm{i}\mathrm{P}arrow-\infty}u(t, ox)$ $=1,\mathrm{h}.\mathrm{m}v(t,ox)xarrow-\infty$ $=0, \lim_{xarrow\infty}u(t,\mathrm{o}e)=0,\lim_{xarrow\infty}v(t,ox)$ $=1$ ,

We first construct atraveling wave solution of (2.4) on R.
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Let $d>0$ . We denote the velocity of traveling wave by $s$ , which is an
unknown non-negative constant. By the use of the moving coordinate system
with velocity $s$ , the equations in (2.4) are expressed as

$\frac{\partial u}{\partial t}=\frac{\partial^{2}v}{\partial x^{2}}+s\frac{\partial u}{\partial x}+vf(u)$ , $\frac{\partial v}{\partial t}=d\frac{\partial^{2}v}{\partial x^{2}}+s\frac{\partial v}{\partial x}-\cdot vf(u)$ . (2.5)

Atraveling wave $(U(x), V(x))$ is astationary solution of (2.5) satisfying

$U(-\infty)=1$ , $V(-\infty)=0$ , $U(\infty)=0$ , $\mathrm{I}^{r}’(\infty)=1$ . (2.6)

Since we cover atraveling wave with the property $U’(x)\leq 0$ alone $(’ = \frac{d}{dx})$ , we
may fix $U(0)=u_{\dot{*}g}$ . Thus, $(U(x), V(x))$ has to fulfill

$U’+sU’+V=0$, $dV’+sV’-\mathrm{I}^{\Gamma}=0$ $(x<0)$ , (2.7)

$U’+sU’=0$, $dV’+sV’=0$ $(x>0)$ . (2.8)

The solution of (2.7) subject to (2.6) is

$\mathrm{t}^{l}(x)=v_{ig}e^{\alpha x}$ , $U(x)=1- \frac{\iota\prime_{g}}{\alpha^{2}+s\alpha}\dot{.}e^{\alpha \mathrm{r}}$ $(x<0)$ , (2.9)

where $v_{ig}=V(0)$ and $\alpha$ is the positive root of $d‘ x^{2}+sx-1=0$ . Noting
$l^{\gamma}(0)=u_{jg}$ and $V(0)=v_{ig}$ , we express the solution of (2.8) subject to (2.6) as

$V(x)=1-(1-v_{\acute{\iota}g})e^{-(\epsilon/d)x}$ , $U(x)=u_{ig}e^{-sx}$ $(x>0)$ . (2.10)

Since both $U(x)$ and $V(x)$ are of class $\mathrm{C}^{1}$ at $x$ $=0$ , it should be satisfied that

$1- \frac{v_{g}}{\alpha^{2}+s\alpha}=u_{ig}$ , $- \frac{v_{*g}}{\alpha+s}.=-su_{ig}$ , $\alpha v_{g}.\cdot=\frac{s}{d}(1-v_{ig})$ . (2.11)

Multiplying the third equality by $d\alpha$ and noting $d\alpha^{2}+s\alpha-1=0$ , we have
$\dagger J_{g}=\mathrm{s}\mathrm{a}$ . By the substitution of $v_{ig}=s\alpha$ the first and second equalities of
(2.11) are respectively rewritten as

$1- \frac{s}{\alpha+s}=u_{ig}$ and $\frac{\alpha}{\alpha+s}=u_{*g}.$ ,

which are equivalent each other. Hence,

$s^{2}= \frac{(1-u_{g})^{2}}{(1-u_{g}+du_{g})u_{ig}}$ , $\alpha=\frac{su_{ig}}{1-u_{ig}}$ , $v_{g}=s\alpha$. (2.12)

Substituting these into (2.9) and (2.10), we obtain atraveling wave solution of
(2.4) with $d>0$ . We note that

$darrow 01\mathrm{i}_{\mathrm{l}}\mathrm{n}s$

$=\sqrt{\frac{1-u_{jg}}{u_{g}}}\equiv s^{*}$ , $\lim_{darrow 0}\alpha=\frac{1}{S^{*}}$ , $\lim_{darrow 0}v_{g}=1$ . (2.13)
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Figure 2.1: Atraveling wave solution $(u_{g}=0853555)$

Atraveling wave solution of $(2,4)$ with $d=0$ is similarly constructed. The
solutions of (2.7) and (2.8) with $d=0$ subject to (2.6) are given by

$V(x)=v_{ig}e^{\alpha x}$ , $U(x)$ $=1- \frac{v_{ig}}{\alpha^{2}+s\alpha}e^{\alpha x}$ $(x<0)$ , (2.14)

$V(x)=1$ , $U(x)=u_{ig}e^{-\epsilon x}$ $(x >0)$ , (2.15)

respectively, where $s>0$ and $\alpha=\frac{1}{s}$ . Since $U(x)$ is of $\mathrm{C}^{1}$ and $V(x)$ is of class
$\mathrm{C}^{0}$ at $x=0$ , $s$ and $v_{g}$ have to satisfy

$1- \frac{v_{g}}{\alpha^{2}+s\alpha}=u_{ig}$ , $- \frac{v_{p}}{\alpha+s}=-su:g$
’

$\mathrm{t}^{)}ig=1$ . (2.16)

We thus obtain

$s^{2}= \frac{1-u_{\dot{1}}g}{u_{ig}}$ , $\alpha=\frac{1}{s}$ , $v_{ig}=1$ . (2.17)

The profile of traveling wave with $d=0$ is shown in Figure 2.1. As derived from
(2.9)\sim (2.10), (2.13), (2.14)\sim (2.15) and (2.17), the traveling wave for $d>0$ tends
to that for $d=0$ as $d\prec \mathrm{O}$.

We now proceed to aplanar traveling wave in the band domain $\Omega_{2}$ and the
cylindrical domain $\Omega_{\}$ . We employ the periodic boundary condition in the y-

$\partial^{-}u$ $\partial v$

direction on the boundary of $\Omega_{2}$ and the n0-flux condition $\overline{\partial n}=\overline{\partial n}=0$ on the
boundary of $\Omega_{3}$ where $n$ denotes the unit outer normal vector on the boundary.
Hence, $(u(t,x,y),v(t, x,y))=(U(x-st), V(x-st))$ and $(u(t,x,y, z), v(t,x. y, z))=$
$(U(x-st), V(x-st))$ are aplanar traveling wave in $\Omega_{2}$ and $\Omega_{\theta}$ , respectively,
where $(U(x-st), V(x-st))$ is the traveling wave on R.
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3 Linearized equation around the planar trav-
eling wave

We first deal with the one-dimensional problem. The inner product of $L^{2}(\mathrm{R})$

is denoted by $( \xi_{\mathrm{T}}\zeta)=\int_{\mathrm{R}}\xi\zeta dx$ , and the moving coordinate $x-st$ is simply

expressed by $x$ again. Let $d>0$ . Then, the linearized equation of (2.5) around
the traveling wave $(U(x), V(x))$ is given by

$( \frac{\partial\phi}{\partial t},\xi)=-(\frac{\partial\phi}{\partial x}, \frac{\partial\xi}{\partial x})+s(\frac{\partial\phi}{\partial x},\xi)+(\psi f(U),\xi)-\omega\phi(t,0)\xi(0)$

$\forall\xi\in H^{1}(\mathrm{R})$ ,
(31)

$( \frac{\partial\psi}{\partial t},\zeta)=-d(\frac{\partial\psi}{\partial x}, \frac{\partial\zeta}{\partial x})+s(\frac{\partial\psi}{\partial x},\zeta)-(\psi f(U),\zeta)+\omega\phi(t,0)\zeta(0)$

$\forall\zeta\in H^{1}(\mathrm{R})$

in the weak form, where

$\omega$ $= \frac{V(0)}{U(0)},=-\frac{\alpha}{u_{ig}}=-\frac{s}{1-u_{ig}}<0$ . (3.2)

We define an operator $\mathcal{L}$ by the right-hand side of (3.1). More precisely,
$\mathcal{L}(\phi, \psi)^{T}\equiv(L_{1}(\phi, \psi),$ $L_{2}(\phi, \psi))^{T}$ is defined by

$(L_{1}( \phi, \psi),\xi)=-(\frac{\partial\phi}{\partial x}, \frac{\partial\xi}{\partial x})+s(.\frac{\partial\phi}{\partial x}, \xi)+(\psi f(U),\xi)-\omega\phi(t, 0)\xi(0)$

$\forall\xi\in H^{1}(\mathrm{R})$ ,
(3.3)

$(L_{2}( \phi, \psi),\zeta)=-d(\frac{\partial\psi}{\partial x}, \frac{\partial\zeta}{\partial x})+s(\frac{\partial\psi}{\partial x},\zeta)-(\psi f(U), \zeta)+\omega\phi(t,0)\zeta(0)$

$\forall\zeta\in H^{1}(\mathrm{R})$ .
Let us consider the spectrum of $\mathcal{L}$ in the weighted Banach space

$.,\mathrm{Y}_{1^{w_{\phi},w\psi\}(\mathrm{R})=\{(\phi,\psi);\phi w_{\phi}\in H^{1}(\mathrm{R}),\psi w_{\psi}\in H^{1}(\mathrm{R})\}}}$ (3.4)

where $w\phi(x)$ and $w\psi(x)$ are smooth weight-functions satisfying

$w_{\phi}(x)=e^{s\mathrm{r}/2}(x\in \mathrm{R})$ , (3.5)

$\mathrm{w}_{4}\{\mathrm{x}$ ) $=1(x<0, |x|\gg 1)$ , $w\psi(x)=e^{sx/2d}(x>0, |x|\gg 1)$ . (3.6)

Then, as described in [2], [10] and [12] for instance, $\mathcal{L}$ defines asectorial operator
and its essential spectrum lies in the left half complex plane bounded away from
the imaginary axis. We thus arrive the eigenvalue problem around the traveling
wave $(U(x),V(x))$ :

Find A $\in \mathrm{C}$ and $(\phi, \psi)\in X_{(w_{\phi},w\psi)}(\mathrm{R})$ such that
(3.7)

$\mathcal{L}(\phi, \psi)^{\mathcal{T}}=\lambda(\phi, \psi)^{\mathcal{T}}$ ,
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which is equivalent to

Find A $\in \mathrm{C}$ and $(\phi,\psi)\in X_{(w_{\phi},w\psi)}(\mathrm{R})$ such that
$\phi’+s\phi’+\psi=\lambda\phi$ , $d\psi’+s\psi’-\psi=\lambda\psi$ $(x<0)$ ,

(3.8)
$\phi’+s\phi’=\lambda\phi$ , $d\psi’+s\psi’=\lambda\psi$ $(x >0)$ ,
$\phi’(+0)-\phi’(-0)=\omega\phi(0)$ . $d_{l}I’’(+0)-d\psi’(-0))=-\omega\phi(0)$ .

We now turn to aplanar traveling wave in the band domain $\Omega_{2}$ . Denote the
inner product of $L^{2}(\Omega_{2})$ by $( \xi, \zeta)=\int_{\Omega_{\vee}}"\xi(dx$ and let $\mathrm{X}(\mathrm{Q}2)=\{\xi\in H^{1}(\Omega_{2})$ :
$\xi(x,\mathrm{O})=\xi(x, L)$ for $x\in \mathrm{R}$ } because of the periodic boundary condition in the
$y$-direction. Then, the linearized equation around the planar traveling wave is
expressed as

$( \frac{\partial\phi}{\partial t},\xi)=-(\frac{\partial\delta}{\partial x}, \frac{\partial\xi}{\partial x})-(\frac{\partial\phi}{\partial y}, \frac{\partial\xi}{\partial y})+s(\frac{\partial\phi}{\partial x}.\xi)+(\psi f(U).\xi)$

$-\omega$ $\int_{0}^{L}\varphi^{\mathrm{J}}(t, 0,y)\xi(0,y)dy$ $\forall\xi\in X(\Omega_{2})$ ,

(3.9)
$( \frac{\partial\psi}{\partial t},\zeta)=-d(\frac{\partial\psi}{\partial x}, \frac{\partial\zeta}{\partial x})-d.(\frac{\partial\psi}{\partial y}, \frac{\partial\zeta}{\partial y})+.\tau(\frac{\partial\psi}{\partial x}, \zeta)-(\psi f(U), \zeta)$

$+\omega$ $\int_{0}^{L}\varphi(|t, 0,y)\zeta(0,y)dy$ $\forall\zeta\in X(\Omega_{2})$

in the weak form, and the eigenvalue problem is given by

$\Delta\phi+s\frac{\partial\phi}{\partial x}+\psi=\lambda\phi$, $d \Delta\psi+s\frac{\partial\psi}{\partial x}-\psi=\lambda\psi$ $(x<0, y\in(0, L))$ ,

$\Delta\phi+s\frac{\partial\phi}{\partial x}=\lambda\phi$, $d\Delta\psi$ $+s \frac{\partial\psi}{\partial x}=\lambda\psi$ $(x>0, y\in(0, L))$ ,
(3.10)

$\frac{\partial\phi}{\partial x}(+0, y)-\frac{\partial\phi}{\partial x}(-0, y)=\omega\phi(0, y)$ $(y\in(0, L))$ ,

$d \frac{\partial\psi}{\partial x}(+0,y)-d\frac{\partial\psi}{\partial x}(-0, y)=-\omega\phi(0,y)$ $(y\in(0, L))$ .

Applying the Fourier expansion to the eigenfunctions ([15] for rigorous treat-
ment), we look for asolution of (3.10) in the form

$\phi(x, y)=e^{:_{T^{\pi\underline{n}}y}^{\mathrm{z}}}\tilde{\phi}(x)$ , $\psi(x, y)=e^{:\frac{2nn}{t}y}\tilde{\psi}(x)$ $n=0,1,2$ , $\cdots$ (3.11)

where $i=\sqrt{-1}$ . We put $k$. $= \frac{2\pi n}{L}$ and denote $\tilde{\phi}(ir,)$ and $\tilde{\psi r}(x)$ in (3.11) by $\phi(x)$
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and $\psi(x)$ , respectively. Then, (3.10) together with (3.11) is expressed as

Find A $\in \mathrm{C}$ and $(\phi,\psi)\in.\mathrm{Y}_{(w_{\phi},w_{\psi}\}}(\mathrm{R})$ such that
$\phi’+s\phi’-k^{2}\emptyset+\psi=\lambda\phi$ , $d\psi’+s\psi’-(1+dk^{2})\psi=\lambda\psi$ $(x<0)$ ,

(3.12)
$\phi"+s\phi’-k^{2}\phi=\lambda\phi$ , $d\psi’+s\psi’-dk^{2}\psi=\lambda\psi$ $(x>0)$ ,
$\phi’(+0)-\phi’(-0)=\omega\phi(0)$ , $d(\psi’(+0)-\psi’(-0))=-\omega\phi(0)$ .

The problem (3.12) with $k=0$ is the same as the one-dimensional eigenvalue
problem (3.8).

We apply the Fourier-Bessel expansion to eigenfunctions with the polar c0-

ordinate in the cylindrical domain $\Omega_{3}=\{(x,r, \theta));x\in \mathrm{R}, r<R,0\leq\theta<2\pi\}$ :

$\phi(x, r, \theta)=e^{in\theta}J_{r\iota}(\frac{R_{nm}}{R}r)\tilde{\phi}(x)$, $\psi(x, r, \theta)=e^{:n\theta},J_{r\iota}(\frac{R_{nm}}{R}r)\tilde{\psi}(x)$ ,

where $J_{n}(\mathrm{r})$ is the Bessel function of order $n(n=0,1, \cdots)$ and $R_{nm}$ is the m-th
positive root of

$\frac{dJ_{n}}{dr}(r)\equiv\frac{n}{r}J_{n}(r)-J_{n+1}(r\cdot)=0$

$(m=1,2\cdots )$ . Each $R_{mm}$ is determined so that $\phi(x, r, \theta)$ and $tl’(x, r, \theta)$ satisfy
the n0-flux boundaiy condition at $r=R$, and it holds that

$R_{11}<R_{21}<R_{01}<R_{31}<\cdots$ .

Thus the eigenvalue problem in the cylindrical domain is given by the same form

as (3.12) except the wave 1lul1lber $k$ defined by $k= \frac{R_{nm}}{R}(n=0,$ $1$ , $\cdots,rn$ $=$

$1,2$ , $\cdots)$ .

4Computation of eigenvalues
In this section, we discuss the way to solve the eigenvalue problem (3.12), where
an eigenvalue Acan be assumed to satisfy

${\rm Re}\lambda>-1/2$ . (4.1)

Step 1(general solution of $d\psi’+s\psi^{l}-(\lambda+1+dk^{2})\psi=0$ in $x<0$) Let $\gamma_{1}$

and $\gamma$ be two roots of $dx^{2}+sx$ $-(\lambda+1+dk^{2})=0({\rm Re}\gamma_{1}\leq{\rm Re}\gamma)$ . Then, $e^{\gamma_{1}x}$ is
eliminated because ${\rm Re}\gamma_{1}\leq-s/(2d)$ from $\gamma_{1}+\gamma=-s/d$. On the other hand,
Rey $>0$ . Actually, comparing the real part of tlle relation between roots and
coefficients

$(\lambda+1+dk^{2})/d=-\gamma_{1}\gamma=-(-s/d-\gamma)\gamma=(s/d+\gamma)\gamma$ ,
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we obtain $({\rm Re}\lambda+1+dk^{2})/d=(s/d+{\rm Re}\gamma’){\rm Re}\gamma-({\rm Im}\gamma)^{2}\dot,$ which together with
${\rm Re}\gamma\geq-s/(2d)$ and (4.1) implies ${\rm Re}\gamma>0$ . We thus obtain the general solution
with an integration constant $C$

$\psi(x)=Ce^{\gamma x}$ $(x<0)$ . (4.2)

Step 2(particular solution of $\phi’’+s\phi’-(\lambda+k^{2})\phi=-\psi$ in $x<0$) Generically,
it holds that $\gamma^{2}+s\gamma-\lambda-k^{2}\neq 0$ and the particular solution is

$- \frac{Ce^{\gamma x}}{\gamma^{2}+s\gamma-\lambda-k^{2}}$ .

The exceptional case of $\gamma^{2}+s\gamma-\lambda-k^{2}=0$ will be discussed in Step 8.
Step 3(general solution of $\phi’+\#\phi’-(\lambda+k^{2})\phi=-\mathrm{t}^{l}’,$’in $x<0$) Let $\kappa_{1}$. and
$\kappa_{2}$ be two roots of $x^{2}+sx-(\lambda+k^{2})=0({\rm Re}\kappa_{1}\leq{\rm Re}\kappa_{2})$ . Since ${\rm Re}\kappa_{1}\leq-s/2$

ffom $\kappa_{1}+\kappa_{2}=-s$ , $e^{n_{1}x}$ cannot be a $\psi \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{t}$ of afunction pair belonging
to $\wedge \mathrm{Y}(w_{\phi},w_{\psi})(\mathrm{R})$ . Hence, the general solution of $\phi^{J}+s\phi’-(\lambda+k^{2})\phi=0$ in
$x<0$ is $\phi(x)=Ae^{\kappa_{2}x}$ ( $A$ :an integration constant), and the general solution of
$\phi’+s\phi’-(\lambda+k^{2})\phi=-\psi$ in $x<0$ is given by

$\phi(x)=Ae^{\kappa_{2}x}-\frac{Ce^{\gamma x}}{\gamma^{2}+s\gamma-\lambda-k^{2}}$ $(x<0)$ . (4.3)

Step 4(general solution of $\phi’+s\phi’-(\lambda+k^{2})\phi=0$ in $x>0$) The general
solution is given by

$\phi(x)=Be^{\kappa_{1}\mathrm{r}}$ $(x>0)$ (4.4)

with an integration constant $B$ since $e^{\kappa \mathrm{z}x}$ is eliminated because of ${\rm Re}\kappa_{2}\geq-s/2$ .
Step 5 (general solution of $d\psi’+s\psi’$ -(A $+dk^{2}$ ) $\psi=0$ in $x>0$) Let $\delta$ and $\delta_{2}$

be two roots of $dx^{2}+sx$ -(A $+dk^{2}$ ) $=0({\rm Re}\delta\leq{\rm Re}\delta_{2})$ . Since ${\rm Re}\delta_{2}\geq-s/(2d)$

from $\delta+\delta_{2}=-s/d$ , $e^{\delta_{2\#}}$ cannot be a $\psi$-component of afunction pair belonging
to $X(w_{\phi},w\psi)(\mathrm{R})$ . Hence the general solution is given by

$\psi(x)=De^{\delta x}$ $(x>0)$ (4.5)

with an integration constant $D$ .
Step 6(continuity and jump conditions) At $x=0$, $\phi(x)$ and $\psi(x)$ are continu-
ous and their derivatives satisfy the jump condition in (3.12), it holds that

$A- \frac{C}{\gamma^{2}+s\gamma-\lambda-k^{2}}=B$ , $C=D$,
(4.6)

$\kappa_{1}B-\kappa_{2}A+\frac{\gamma C}{\gamma^{2}+s\gamma^{l}-\lambda-k^{2}}=\omega B$, $d(\delta D-\gamma C)=-\omega B$ .
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Step 7(algebraic equation determining eigenvalues) Removing $A$ , $B$ and $D$

from (4.6), we obtain

$\frac{\kappa_{1}}{\omega}.d(\gamma-\delta)C-\frac{Pi_{2}}{\omega}d(\gamma-\delta)C-\frac{\kappa_{2}C}{\gamma^{2}+s\gamma-\lambda-k^{2}}$

(4.7)
$+ \frac{\gamma C}{\gamma^{2}+s\gamma-\lambda-k^{2}}=d(\gamma-\delta)C$ ,

which results in the following algebraic equation determining eigenvalues:

$\frac{d(\gamma-\delta)}{\omega}(\kappa_{1}-\kappa_{2}-\omega)+\frac{1}{\gamma-\kappa_{1}}=0$ . (4.8)

Step 8(exceptional case of $\gamma^{2}+s\gamma-\lambda-k^{2}=0$) In this case, the particular

solution of $\phi’+s\phi’-(\lambda+k^{2})\phi=-\psi$ in $x<0$ is $- \frac{C}{s+2\gamma}xe^{\gamma ae}$ . After calculations

similar to Steps 3\sim 7, we obtain

$A=B$, $C=D$ ,

$\kappa_{1}B-\kappa_{2}A+\frac{c_{J}}{s+2\gamma}=\omega B$ , $d(\delta D-\gamma C)=-\omega B$

(4.9)

corresponding to (4.6), which results in

$\frac{d(\gamma-\delta)}{\omega}(\kappa_{1}-\kappa_{2}-\omega)+\frac{1}{s+2\gamma}=0$. (4.10)

Since $\gamma=\kappa_{2}$ and $\kappa_{1}+\kappa_{2}=-s$ fr om $\gamma^{2}+S^{\wedge}[-\lambda-k^{2}=0$, we have $s+2\gamma=$

$\gamma^{l}-\kappa_{1}$ . Hence, (4.10) is the same as (4.8) and all eigenvalues satisfying (4.1)
are determined by (4.8).

5Linearized equation for the case of d $=0$

The linearized equation around the planar traveling wave for the case of $d=0$

is derived by the method similar to the case of $d>0$ . In the band domain $\mathrm{f}l_{2}$

for instance, it is expressed by

$( \frac{\partial\phi}{\partial t},\xi)=-(\frac{\partial\phi}{\partial x}, \frac{\partial\xi}{\partial x})-(\frac{\partial\phi}{\partial y}, \frac{\partial\xi}{\partial y})+s(\frac{\partial\phi}{\partial x},\xi)+(\psi f(U),\xi)$

$-\omega$ $\int_{0}^{L}\phi(t,0,y)\xi(0, y)dy$ $\forall\xi\in X(\Omega_{2})$ ,
$|’.r\backslash r.1$ ;

$( \frac{\partial\psi}{\partial t},\zeta)=-s(\psi, i)-(4^{1}f\partial x\partial(([t).\zeta)$

$+\omega$ $\int_{0}^{L}\phi(t,0,y)\zeta(0,y)dy$ $\forall\zeta\in H^{1}(\Omega_{2})$
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in the weak form, where $(\xi, \zeta)=\xi(^{\llcorner}dx\acute{\Omega}_{\vee}\eta$ and

$\omega$ $= \frac{V(0)}{U’(0)}=-\frac{1}{su_{ig}}=-\frac{s}{1-u_{ig}}<0$. (5.2)

It is natural to consider the weighted Banach space $X_{(w_{\phi\backslash }w\psi)}(\mathrm{R})$ tends to

$\wedge \mathrm{Y}_{(w_{\phi},*)}(\mathrm{R})=$ { $(\phi,$ $\psi);\phi w_{\phi}\in H^{1}(\mathrm{R})$ , $\psi|_{\mathrm{R}_{-}}\in H^{1}(\mathrm{R}_{-})$ , $\psi(x)=0$ for $x>0$}

as $darrow \mathrm{O}(\mathrm{R}_{-}=(-\infty,0))$ . Based on this understanding, we get the following
formal eigenvalue problem

Find A $\in \mathrm{C}$ and $(\phi, \psi)\in X(w_{\phi},*)(\mathrm{R})$ such that
$(l)”+s\phi’-k^{2}\phi+\psi=\lambda\phi$ , $s\psi’-\psi’=\lambda\psi$ $(x<0)$ ,

(5.3)
$\phi’’+s\phi’-k^{2}\phi=\lambda\phi$ , $s\psi’=\lambda\psi$ $(x>0)$ ,
$\phi’(+0)-\phi’(-0)=\omega\phi(0)$ , $s(\psi(+0)-\psi(-0))=-\omega\phi(0)$ ,

where $k= \frac{\underline{?}n7\Gamma}{L}$ $(n=0,1, \cdots)$ . The formal eigenvalue problem in the one-
dimensional space and the cylindrical domain $\Omega_{3}$ is given by (5.3) with $k=0$

and $k= \frac{R_{nm}}{R}$ $(n=0,1, \cdots, m=1,2, \cdots)$ , respective $1\mathrm{y}$.
The problem (5.3) subject to (4.1) is solved as follows. Put $\gamma=(\lambda+1)/\mathrm{s}$

and denote by $\kappa_{1}$ and $\kappa_{\mathit{2}}$ two roots of $x^{2}+sx-(\lambda+k^{2})=0({\rm Re}\kappa_{1}\leq{\rm Re}\kappa_{2})$ . It
is shown that there exists no eigenvalue satisfying $\gamma^{2}+s\gamma-\lambda-k^{2}=0$ . Hence,
we obtain

$\psi(x)=Ce^{\gamma x}$ , $\phi(x)=Ae^{\kappa_{2}ae}-\frac{Ce^{\gamma x}}{\gamma^{2}+s\gamma-\lambda-k^{\prime 2}}$ $(x<0)$ ,
(5.4)

$\phi(x)=Be^{\kappa_{1}oe}$ , $\psi(x)=0$ $(x>0)$

corresponding to (4.2)\sim (4.5). It follows from the continuity of $\phi$ at $x$ $=0$ and
the jump condition in (5.3) that

$A- \frac{C}{\gamma^{2}+s\gamma-\lambda-k^{2}}=B$ ,
(5.5)

$\kappa_{1}B-h_{2}.A+\frac{\gamma C}{\gamma^{2}+s\gamma-\lambda-k^{2}}=\acute{\iota}vB$ , $-sC=-\omega B$ ,

which leads to the algebraic equation

$\frac{s}{\omega}(\kappa_{1}-\kappa_{2}-\omega)+\frac{1}{\gamma-\kappa_{1}}=0$ . (5.6)

50



6Appearance of helical waves
We solve (4.8) by using the Newton method since its solution is not be given ex-
plicitly. We first fix $d$ and $u_{ig}$ suitably. Calculating the left-hand side of (4.8) and
checking the signs of its real and imaginary parts for various $\lambda({\rm Re}\lambda>-1/2)$ , we
find some approximate eigenvalues. Then, employing these approximate eigen-
values as initial values, we get eigenvalues by the Newton method. Moreover,
the dependency of eigenvalue on $d$ and $u_{\mathrm{i}g}$ is studied also by the Newton method.
Since the terms $s^{2}+4d(\lambda+1+dk^{2})$ , $s^{2}+4d(\lambda+dk^{2})$ and $s^{2}+4(\lambda+k^{2})$ included
in the let and side of (4.8) never take anegative real value, their square roots
with positive real part are denoted by using the notation $\Gamma$. For $d>0$ ,
$d(\gamma-\delta)$ is expressed as

$d( \gamma-\delta)=\frac{1}{2}\sqrt{s^{2}+4d(\lambda+1+dk^{2})}.+\frac{1}{2}\sqrt{s^{2}+4d(\lambda+dk^{2})}$ , (6.1)

which implies $d(\gamma-\delta)$ tends to $s$ formally as $darrow \mathrm{O}$ . In this sense, (4.8) tends
(5.6) as $d\prec \mathrm{O}$ .

The following behaviors of eigenvalues are proved.
Proposition 1When $k=0$, A $=0$ is asimple eigenvalue and the eigenfunction
is $(U’(x)\dot, V’(x))$ .
Proposition 2If $d=0$ , $\lambda=0$ is not an eigenvalue for $k\neq 0$ and $\frac{\partial\lambda}{\partial k^{2}}|_{k=0,\lambda=0}<0$.

In the case of $d=0$ and $k=0$. we can get more precise information
on solutions of (5.6). Put $\kappa_{2}=\mathrm{s}\mathrm{k}$ . We note that Rex $>-1/2$ from (3.5).
Substituting $\kappa_{1}=-s-\kappa_{2}=-(1+\kappa)s$ , A $=-\kappa_{1}\kappa_{2}-k^{2}=\kappa.(1+\kappa)s^{2}-k^{2}$ and
$s^{2}=(1-u_{ig})/u_{ig}$ into (5.6) and multiplying it by $s\omega(\gamma-h_{1}.)u:g^{2}$’we reduce
(5.6) to the cubic equation

$\{(1-u_{ig})(\kappa+1)^{2}+u_{ig}(1-h^{2}.)\}\{1-(1-u_{g})(2\kappa+1)\}-u_{g}\dot{.}=0$ (6.2)

with respect to $\kappa$ . We here let $k=0$ . Then, (6.2) is factorized as

$-(1-u_{*g}.)\kappa\{2(1-u_{ig})\kappa^{\mathit{2}}+(4-5u:g)h. +2(1-u_{ig})\}=0$ . (6.3)

Since $D=u_{g}(9u\cdot-|g8)$ is the discriminant of the quadratic equation $2(1-$
$u_{ig})\kappa^{2}+(4-5u:g)\kappa$. $+2(1-u_{ig})=0$ , its solutions are complex conjugate

$\kappa$ $= \frac{5v_{\dot{|}g}-4\pm i\sqrt{-D}}{4(1-u_{ig})}$ when $u:_{ff}<8/9$ and they are positive real when $u_{ig}\geq$

$8/9$ . The condition Reg $>-1/2$ is satisfied by $u_{ig}>2/3$ . Hence, the eigenvalue
problem (5.3) subject to (4.1) has just one solution $\lambda=0$ when $u_{ig}\leq 2/3$ , three
solutions $\lambda=0$ alld- apair of $\mathrm{c}\mathrm{o}$ mplex conjugate numbers when $2/3<u_{g}<8/9$
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and also three solutions $\lambda=0$ and $\mathrm{t}$ wo positive numbers when $u_{ig}\geq 8/9$ . The
real part of the pair of complex conjugate eigenvalues is expressed as

${\rm Re} \lambda=\mathrm{R}\mathrm{e}\mathrm{x}(1 +{\rm Re}\kappa)s^{2}-({\rm Im}\kappa)^{2}s^{2}=\frac{7u_{ig}-6}{8(1-u_{\dot{|}g})}$, (6.4)

which is negative for small $u_{ig}$ and increases with $u_{ig}$ . The above expression

together with $|{\rm Re} \lambda|=\frac{(3u_{ig}-2)\sqrt{u_{ig}(8-9u_{ig})}}{8u_{p}(1-u_{ig})}$ implies that the complex con-
jugate eigenvalues cross the imaginary axis transversely at the critical $u_{\dot{*g}}=6/7$

and they move in the complex plane with positive real part for larger $u_{\dot{*}g}$ and
arrive at the point A $=1/4$ on the real axis when $u_{ig}=8/9$ .

Solving the algebraic equations (4.8) and (6.2) by the Newton method and
the bisection method, we clarify the following properties of eigenvalues. (In the
description of properties, we neglect two positive real eigenvalues which may
appear when $u_{ig}$ is very near to the unity.)
Property 1(number of eigenvalues) The problem (3.12) subject to (4.1)
as well as (5.3) subject to (4.1) has one real eigenvalue and apair of complex
conjugate eigenvalues at most.
Property 2(real eigenvalue) There exists acontinuous function $\overline{k}(\underline{u}_{ig};d)$ of
$u_{g}$ and $d$ such that the problem has areal eigenvalue if and only if $k<k(u_{*g}.;d)$ .
The real eigenvalue Ais equal to zero for $k=0$ and is negative for $k\neq 0$ .

Figure 6.1: Hopf bifurcation point $\mathrm{c}\iota_{g}^{Hopf}(k;d)$ of planar traveling wave

Property 3(a pair of complex conjugate eigenvalues and the Hopf
bifurcation) Let d $=0$ or d $\ll 1$ . There exists an interval J $\subset(0,$ 1) such
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that the problem has apair of complex conjugate eigenvalues for $u_{ig}\in J$ . Its
real part is negative for small $u_{ig}$ and increases with $u_{ig}$ , and the pair crosses
the imaginary axis transversely at acritical value $u_{ig}=u_{ig}^{Hopj}($&; d).

Figure 6.2: An approximate solution at the Hopf bifurcation point for $k=0.21$
$(t =0.0, u_{ig}^{Hopf}(k.;0)\simeq 0.853555$ , $\lambda=i\sigma$ with $\sigma\simeq 0.407945$ , $L=2\pi/k$ for the
left pair while $L=4\pi/k$. for the right one)

Property 4(relation between the wave number $k$ and the Hopf bi-
furcation point $u_{ig}^{Hopf}(k;d))$ For each $d$ , there exists $k^{*}(d)>0$ such that
$u_{\dot{\mathrm{s}}g}^{Hopf}($ &; $d)$ decreases with increasing $k$ for $k<k^{*}(d)$ and $u_{\mathrm{i}g}^{Ho\mathrm{p}f}(k;d)$ increases
with $k$ for $k>k^{*}(d)$ as shown in Figure 6.4.

As stated in Property 3in the above, aplanar traveling wave lose its stability
by the Hopf bifurcation at $u_{ig}=u_{ig}^{Hop[}(k;d)$ . Then, what solution emerges
through the Hopf bifurcation ? The planar pulsating wave takes place of the
planar traveling wave clearly when $k=0$, however, what kind of oscillatory
solution appears when $k\neq 0$ ? The bifurcated solution in the band domain
$\Omega_{2}$ is approximated by asuitable sum of planar traveling wave and solution
of linearized equation (5.1) at the Hopf bifurcation point $u_{ig}=u_{ig}^{Hopf}lk.$ : $d_{l}^{\backslash },\cdot$ A
solution of (5.1) with $u_{ig}=u_{g}^{Hopf}(k;d)$ is given by

$(\begin{array}{ll}\mathrm{R}\mathrm{e}b(\iota\cdot) \mathrm{I}\mathrm{m}\Phi^{\mathrm{t}}(\mathrm{J}.)\mathrm{R}\mathrm{e}u\prime(x) \mathrm{I}\mathrm{m}\psi,(x)\end{array})$ ( $-\sin(.ky+\sigma t)\cos(ky+\sigma t)$ $\sin(ky+\sigma t)\cos(ky+\sigma t)$ ) $(\begin{array}{l}ab\end{array})$ (6.5)
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with arbitrary constant $a$ and $b$ , where $\sigma$ denotes the imaginary part of eigen-
value and $(\phi(x), \%))$ is the eigenfunction associated with $\acute{\iota}\sigma$ . In Figure 6.5 we
draw the distribution of the sum of planar traveling wave and the above solution
with $a=b=1$ with the view to checking the type of bifurcated solution. The
wave 1lu1llber $k$ equals 0.21 for the both left and right pairs of figures. The baud
width $L$ equals $2\pi\cdot 1/k$ for the left pair and it does $2\pi\cdot$ $2/k$ for the right one.
The planar traveling wave propagates down ward, and the left and right figures
of each pair display the distribution of $u(0,x, y)$ and $v(0,x, y)$ in agrey scale,
respectively. The expression (6.5) implies that the distributions of $u(t,x, y)$ and
$v(t,x, y)$ rotate left or right as time $t$ goes on, and tells us the appearance of
helical wave via the Hopf bifurcation of planar traveling wave.

Combining thc above discussion, we roughly summarize the results at the
end of Section 1. We note that there are reported bifurcation diagrams similar
to Figure 6.4 in [5], [1] and [6] among others, where the appearance of spin
waves ( $=\mathrm{h}\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}$ waves) are discussed based on areduced model called the tw0-
phase model of Margolis ([4]). Sivashinsky [14] also obtains asimilar bifurcation
diagram by using another reduced system.
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