123 research outputs found

    Test of High Temperature Superconducting REBCO Coil Assembly for a Multi-Frequency ECR Ion Source

    Full text link
    Chong T.H., Fukuda M., Yorita T., et al. Test of High Temperature Superconducting REBCO Coil Assembly for a Multi-Frequency ECR Ion Source. IEEE Transactions on Applied Superconductivity 34, 1 (2024); https://doi.org/10.1109/TASC.2024.3360935.High temperature superconducting REBCO tape has the characteristic of maintaining high critical current density under strong external magnetic field, which makes it an ideal material for the construction of air-core electromagnets of accelerator and electron cyclotron resonance (ECR) ion source. In Research Center for Nuclear Physics, Osaka University, a non-insulated air-cored REBCO coil assembly has been constructed. This coil assebmly consists of three circular REBCO solenoid and six racetrack REBCO coil. This coil assembly will be used as an electromagnet of a multi-frequency ECR ion source, and is also developed as a key technology development of an air-core cyclotron. The magnetic field of this ion source are designed, and 77 K performance tests of the assembly are carried out in order to examine the capability of REBCO coils of inducing magnetic field under external field. In this work, the test results and the magnetic field designed for the ECR ion source will be presented and discussed

    Sympathetic stimulation produces a greater increase in both transmural and spatial dispersion of repolarization in LQT1 than LQT2 forms of congenital long QT syndrome

    Get PDF
    AbstractOBJECTIVESThe study compared the influence of sympathetic stimulation on transmural and spatial dispersion of repolarization between LQT1 and LQT2 forms of congenital long QT syndrome (LQTS).BACKGROUNDCardiac events are more associated with sympathetic stimulation in LQT1 than in LQT2 or LQT3 syndrome. Experimental studies have suggested that the interval between Tpeak and Tend (Tp-e) in the electrocardiogram (ECG) reflects transmural dispersion of repolarization across the ventricular wall.METHODSWe recorded 87-lead body-surface ECGs before and after epinephrine infusion (0.1 μg/kg/min) in 13 LQT1, 6 LQT2, and 7 control patients. The Q-Tend (QT-e), Q-Tpeak (QT-p), and Tp-e were measured automatically from 87-lead ECGs, corrected by Bazett’s method (QTc-e, QTc-p, Tcp-e), and averaged among all 87-leads and among 24-leads, which reflect the potential from the left ventricular free wall. As an index of spatial dispersion of repolarization, the dispersion of QTc-e (QTc-eD) and QTc-p (QTc-pD) were obtained among 87-leads and among 24-leads, and were defined as the interval between the maximum and the minimum of the QTc-e and the QTc-p, respectively.RESULTSEpinephrine significantly increased the mean QTc-e but not the mean QTc-p, resulting in a significant increase in the mean Tcp-e in both LQT1 and LQT2, but not in control patients. The epinephrine-induced increases in the mean QTc-e and Tcp-e were larger in LQT1 than in LQT2, and were more pronounced when the averaged data were obtained from 24-leads than from 87-leads. Epinephrine increased the maximum QTc-e but not the minimum QTc-e, producing a significant increase in the QTc-eD in both LQT1 and LQT2 patients, but not in control patients. The increase in the QTc-eD was larger in LQT1 than in LQT2 patients.CONCLUSIONSOur data suggest that sympathetic stimulation produces a greater increase in both transmural and spatial dispersion of repolarization in LQT1 than in LQT2 syndrome, and this may explain why LQT1 patients are more sensitive to sympathetic stimulation

    Differential effects of beta-blockade on dispersion of repolarization in the absence and presence of sympathetic stimulation between the lqt1 and lqt2 forms of congenital long qt syndrome

    Get PDF
    AbstractObjectivesThis study compared the effects of beta-blockade on transmural and spatial dispersion of repolarization (TDR and SDR, respectively) between the LQT1 and LQT2 forms of congenital long QT syndrome (LQTS).BackgroundThe LQT1 form is more sensitive to sympathetic stimulation and more responsive to beta-blockers than either the LQT2 or LQT3 forms.MethodsEighty-seven-lead, body-surface electrocardiograms (ECGs) were recorded before and after epinephrine infusion (0.1 μg/kg body weight per min) in the absence and presence of oral propranolol (0.5–2.0 mg/kg per day) in 11 LQT1 patients and 11 LQT2 patients. The Q-Tendinterval, the Q-Tpeakinterval and the interval between Tpeakand Tend(Tp-e), representing TDR, were measured and averaged from 87-lead ECGs and corrected by Bazett’s method (corrected Q-Tendinterval [cQTe], corrected Q-Tpeakinterval [cQTp] and corrected interval between Tpeakand Tend[cTp-e]). The dispersion of cQTe(cQTe-D) was obtained among 87 leads and was defined as the interval between the maximum and minimum values of cQTe.ResultsPropranolol in the absence of epinephrine significantly prolonged the mean cQTpvalue but not the mean cQTevalue, thus decreasing the mean cTp-evalue in both LQT1 and LQT2 patients; the differences with propranolol were significantly larger in LQT1 than in LQT2 (p < 0.05). The maximum cQTe, minimum cQTeand cQTe-D were not changed with propranolol. Propranolol completely suppressed the influence of epinephrine in prolonging the mean cQTe, maximum cQTeand minimum cQTevalues, as well as increasing the mean cTp-eand cQTe-D values in both groups.ConclusionsBeta-blockade under normal sympathetic tone produces a greater decrease in TDR in the LQT1 form than in the LQT2 form, explaining the superior effectiveness of beta-blockers in LQT1 versus LQT2. Beta-blockers also suppress the influence of sympathetic stimulation in increasing TDR and SDR equally in LQT1 and LQT2 syndrome

    Relation between Inner Structural Dynamics and Ion Dynamics of Laser-Heated Nanoparticles

    Get PDF
    When a nanoparticle is irradiated by an intense laser pulse, it turns into a nanoplasma, a transition that is accompanied by many interesting nonequilibrium dynamics. So far, most experiments on nanoplasmas use ion measurements, reflecting the outside dynamics in the nanoparticle. Recently, the direct observation of the ultrafast structural dynamics on the inside of the nanoparticle also became possible with the advent of x-ray free electron lasers (XFELs). Here, we report on combined measurements of structural dynamics and speeds of ions ejected from nanoplasmas produced by intense near-infrared laser irradiations, with the control of the initial plasma conditions accomplished by widely varying the laser intensity (9 x 10(14) W/cm(2) to 3 x 10(16) W/cm(2)). The structural change of nanoplasmas is examined by time-resolved x-ray diffraction using an XFEL, while the kinetic energies of ejected ions are measured by an ion time-of-fight method under the same experimental conditions. We find that the timescale of crystalline disordering in nanoplasmas strongly depends on the laser intensity and scales with the inverse of the average speed of ions ejected from the nanoplasma. The observations support a recently suggested scenario for nanoplasma dynamics in the wide intensity range, in which crystalline disorder in nanoplasmas is caused by a rarefaction wave propagating at a speed comparable with the average ion speed from the surface toward the inner crystalline core. We demonstrate that the scenario is also applicable to nanoplasma dynamics in the hard x-ray regime. Our results connect the outside nanoplasma dynamics to the loss of structure inside the sample on the femtosecond timescale

    The Human Polyoma JC Virus Agnoprotein Acts as a Viroporin

    Get PDF
    Virus infections can result in a range of cellular injuries and commonly this involves both the plasma and intracellular membranes, resulting in enhanced permeability. Viroporins are a group of proteins that interact with plasma membranes modifying permeability and can promote the release of viral particles. While these proteins are not essential for virus replication, their activity certainly promotes virus growth. Progressive multifocal leukoencephalopathy (PML) is a fatal demyelinating disease resulting from lytic infection of oligodendrocytes by the polyomavirus JC virus (JCV). The genome of JCV encodes six major proteins including a small auxiliary protein known as agnoprotein. Studies on other polyomavirus agnoproteins have suggested that the protein may contribute to viral propagation at various stages in the replication cycle, including transcription, translation, processing of late viral proteins, assembly of virions, and viral propagation. Previous studies from our and other laboratories have indicated that JCV agnoprotein plays an important, although as yet incompletely understood role in the propagation of JCV. Here, we demonstrate that agnoprotein possesses properties commonly associated with viroporins. Our findings demonstrate that: (i) A deletion mutant of agnoprotein is defective in virion release and viral propagation; (ii) Agnoprotein localizes to the ER early in infection, but is also found at the plasma membrane late in infection; (iii) Agnoprotein is an integral membrane protein and forms homo-oligomers; (iv) Agnoprotein enhances permeability of cells to the translation inhibitor hygromycin B; (v) Agnoprotein induces the influx of extracellular Ca2+; (vi) The basic residues at amino acid positions 8 and 9 of agnoprotein key are determinants of the viroporin activity. The viroporin-like properties of agnoprotein result in increased membrane permeability and alterations in intracellular Ca2+ homeostasis leading to membrane dysfunction and enhancement of virus release

    Characterizing crystalline defects in single nanoparticles from angular correlations of single-shot diffracted X-rays

    Get PDF
    Characterizing and controlling the uniformity of nanoparticles is crucial for their application in science and technology because crystalline defects in the nanoparticles strongly affect their unique properties. Recently, ultra-short and ultra-bright X-ray pulses provided by X-ray free-electron lasers (XFELs) opened up the possibility of structure determination of nanometre-scale matter with angstrom spatial resolution. However, it is often difficult to reconstruct the 3D structural information from single-shot X-ray diffraction patterns owing to the random orientation of the particles. This report proposes an analysis approach for characterizing defects in nanoparticles using wide-angle X-ray scattering (WAXS) data from free-flying single nanoparticles. The analysis method is based on the concept of correlated X-ray scattering, in which correlations of scattered X-ray are used to recover detailed structural information. WAXS experiments of xenon nanoparticles, or clusters, were conducted at an XFEL facility in Japan by using the SPring-8 Angstrom compact free-electron laser (SACLA). Bragg spots in the recorded single-shot X-ray diffraction patterns showed clear angular correlations, which offered significant structural information on the nanoparticles. The experimental angular correlations were reproduced by numerical simulation in which kinematical theory of diffraction was combined with geometric calculations. We also explain the diffuse scattering intensity as being due to the stacking faults in the xenon clusters

    【報告】地元特産の各務原にんじんを活用した子ども食堂を通じた共食への取り組み

    Get PDF
    corecore