213 research outputs found

    Foreword

    Get PDF
    Art and Design Research for the Future: Innovation and Art & Design ; September 26, 2017Conference: Tsukuba Global Science Week 2017Date: September 25-27, 2017Venue: Tsukuba International Congress CenterSponsored: University of Tsukub

    Cell Tropism and Pathogenesis of Measles Virus in Monkeys

    Get PDF
    Measles virus (MV) is an enveloped negative strand RNA virus belonging to the family of Paramyxoviridae, genus Morbillivirus, and causes one of the most contagious diseases in humans. Experimentally infected non-human primates are used as animal models for studies of the pathogenesis of human measles. We established a reverse genetics system based on a highly pathogenic wild-type MV. Infection of monkeys with recombinant MV strains generated by reverse genetics enabled analysis of the molecular basis of MV pathogenesis. The essential in vivo function of accessory genes was indicated by infecting monkeys with recombinant MV strains deficient in the expression of accessory genes. Furthermore, recombinant wild-type MV strains expressing enhanced green fluorescent protein enabled visual tracking of MV-infected cells in vitro and in vivo. To date, three different molecules have been identified as receptors for MV. Signaling lymphocyte activation molecule (SLAM, also called CD150), expressed on immune cells, is a major receptor for MV. CD46, ubiquitously expressed in all nucleated cells in humans and monkeys, is a receptor for vaccine and laboratory-adapted strains of MV. The newly identified nectin-4 (also called poliovirus-receptor-like-4) is an epithelial cell receptor for MV. However, recent findings have indicated that CD46 acts as an MV receptor in vitro but not in vivo. The impact of the receptor usage of MV in vivo on the disease outcome is now under investigation

    The repression of the reverse-oriented transcription from the adenovirus terminus by NFI in competition with TFIID

    Get PDF
    AbstractNuclear factor 1 (NFI) represses the transcription which is promoted by the cloned adenovirus (Ad) type 5 DNA replication origin and is reverse-oriented with respect to the direction of the replication. The mechanism of this repression by NFI was investigated. In the cell-free transcription system, the repression was observed only when NFI was present during the formation of the transcription initiation complex. From the results of DNase I protection experiments, it was indicated that NFI bound to its binding site in the Ad replication origin prevents TFIID from proper binding to the adjacent AT-rich region and consequently represses the transcription

    Ternary complex formation between DNA-adenovirus core protein VII and TAF-Iβ/SET, an acidic molecular chaperone

    Get PDF
    AbstractThe adenovirus (Ad) genome complexed with viral core proteins designated Ad core is the template for transcription of early genes and the first round of replication in Ad-infected cells. A cellular protein designated template-activating factor-I (TAF-I) is found to be involved in remodeling of the Ad core in vitro. Here we found that TAF-I interacts with the Ad DNA through core protein VII in infected cells in early phases of infection. In vitro binding assays using recombinant proteins showed that TAF-I forms ternary complexes with DNA–protein VII complexes

    J Virol

    Get PDF
    Promyelocytic leukemia protein nuclear bodies (PML-NBs) are subnuclear domains implicated in cellular antiviral responses. Despite the antiviral activity, several nuclear replicating DNA viruses use the domains as deposition sites for the incoming viral genomes and/or as sites for viral DNA replication, suggesting that PML-NBs are functionally relevant during early viral infection to establish productive replication. Although PML-NBs and their components have also been implicated in the adenoviral life cycle, it remains unclear whether incoming adenoviral genome complexes target PML-NBs. Here we show using immunofluorescence and live-cell imaging analyses that incoming adenovirus genome complexes neither localize at nor recruit components of PML-NBs during early phases of infection. We further show that the viral DNA binding protein (DBP), an early expressed viral gene and essential DNA replication factor, independently targets PML-NBs. We show that DBP oligomerization is required to selectively recruit the PML-NB components Sp100 and USP7. Depletion experiments suggest that the absence of one PML-NB component might not affect the recruitment of other components toward DBP oligomers. Thus, our findings suggest a model in which an adenoviral DNA replication factor, but not incoming viral genome complexes, targets and modulates PML-NBs to support a conducive state for viral DNA replication and argue against a generalized concept that PML-NBs target incoming viral genomes. The immediate fate upon nuclear delivery of genomes of incoming DNA viruses is largely unclear. Early reports suggested that incoming genomes of herpesviruses are targeted and repressed by PML-NBs immediately upon nuclear import. Genome localization and/or viral DNA replication has also been observed at PML-NBs for other DNA viruses. Thus, it was suggested that PML-NBs may immediately sense and target nuclear viral genomes and hence serve as sites for deposition of incoming viral genomes and/or subsequent viral DNA replication. Here we performed a detailed analyses of the spatiotemporal distribution of incoming adenoviral genome complexes and found, in contrast to the expectation, that an adenoviral DNA replication factor, but not incoming genomes, targets PML-NBs. Thus, our findings may explain why adenoviral genomes could be observed at PML-NBs in earlier reports but argue against a generalized role for PML-NBs in targeting invading viral genomes

    Replication-Uncoupled Histone Deposition during Adenovirus DNA Replication

    Get PDF
    In infected cells, the chromatin structure of the adenovirus genome DNA plays critical roles in its genome functions. Previously, we reported that in early phases of infection, incoming viral DNA is associated with both viral core protein VII and cellular histones. Here we show that in late phases of infection, newly synthesized viral DNA is also associated with histones. We also found that the knockdown of CAF-1, a histone chaperone that functions in the replication-coupled deposition of histones, does not affect the level of histone H3 bound on viral chromatin, although CAF-1 is accumulated at viral DNA replication foci together with PCNA. Chromatin immunoprecipitation assays using epitope-tagged histone H3 demonstrated that histone variant H3.3, which is deposited onto the cellular genome in a replication-independent manner, is selectively associated with both incoming and newly synthesized viral DNAs. Microscopic analyses indicated that histones but not USF1, a transcription factor that regulates viral late gene expression, are excluded from viral DNA replication foci and that this is achieved by the oligomerization of the DNA binding protein (DBP). Taken together, these results suggest that histone deposition onto newly synthesized viral DNA is most likely uncoupled with viral DNA replication, and a possible role of DBP oligomerization in this replication-uncoupled histone deposition is discussed

    DNA replication-dependent binding of CTCF plays a critical role in adenovirus genome functions

    Get PDF
    The expression of adenovirus late genes is shown to require viral DNA replication, but its mechanism remains elusive. Here we found that knockdown of CTCF suppresses viral DNA replication as well as late, but not early, gene expression. Chromatin immunoprecipitation assays indicated that CTCF binds to viral chromatin depending on viral DNA replication. These findings depict CTCF as a critical regulator for adenovirus genome functions in late phases of infection
    corecore