138 research outputs found

    Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling

    Get PDF
    Adult skeletal muscle is able to repeatedly regenerate because of the presence of satellite cells, a population of stem cells resident beneath the basal lamina that surrounds each myofiber. Little is known, however, of the signaling pathways involved in the activation of satellite cells from quiescence to proliferation, a crucial step in muscle regeneration. We show that sphingosine-1-phosphate induces satellite cells to enter the cell cycle. Indeed, inhibiting the sphingolipid-signaling cascade that generates sphingosine-1-phosphate significantly reduces the number of satellite cells able to proliferate in response to mitogen stimulation in vitro and perturbs muscle regeneration in vivo. In addition, metabolism of sphingomyelin located in the inner leaflet of the plasma membrane is probably the main source of sphingosine-1-phosphate used to mediate the mitogenic signal. Together, our observations show that sphingolipid signaling is involved in the induction of proliferation in an adult stem cell and a key component of muscle regeneration

    Transparent Exopolymer Particles in Deep Oceans: Synthesis and Future Challenges

    Get PDF
    Transparent exopolymer particles (TEP) are a class of abundant gel-like particles that are omnipresent in seawater. While versatile roles of TEP in the regulation of carbon cycles have been studied extensively over the past three decades, investigators have only recently begun to find intriguing features of TEP distribution and processes in deep waters. The emergence of new research reflects the growing attention to ecological and biogeochemical processes in deep oceans, where large quantities of organic carbon are stored and processed. Here, we review recent research concerning the role of TEP in deep oceans. We discuss: (1) critical features in TEP distribution patterns, (2) TEP sources and sinks, and (3) contributions of TEP to the organic carbon inventory. We conclude that gaining a better understanding of TEP-mediated carbon cycling requires the effective application of gel theory and particle coagulation models for deep water settings. To achieve this goal, we need a better recognition and determination of the quantities, turnover, transport, chemical properties, and microbial processing of TEP

    Development of a Corona Discharge Ionizer Utilizing High-Voltage AC Power Supply Driven by PWM Inverter for Highly Efficient Electrostatic Elimination

    Get PDF
    The corona discharge ionizer has been widely used to eliminate electrostatic charges on insulators in a variety of manufacturing industries for the prevention of electrostatic discharge (ESD) problems. High-speed electrostatic elimination is conventionally required for ionizer performance. Because of the high sensitivity of recent electronic devices to ESD damage, an extremely low-offset voltage (ion balance) is required for the performance of electrostatic eliminators. Long-term performance stability is required to maintain the quality of the products, but the short cleaning interval of the unit increases the operating cost. The efficiency is also affected by the waveform of the applied voltage. The optimization of the applied voltage is an important factor in achieving long-term performance stability. In this study, an intermittent pulse voltage AC power supply was developed to achieve a highly efficient electrostatic elimination with long-term stability high-speed electrostatic elimination and an excellent ion balance

    Geographic Variation of Particle Size Distribution in the Kuroshio Region: Possible Causes in the Upper Water Column

    Get PDF
    Particle size distribution (PSD) in the ocean is a fundamental property that influences carbon export and food webs; however, PSD variation and its causes in oligotrophic oceans are not entirely clear. Here, we used Laser In-Situ Scattering and Transmissometry to investigate PSD (size range 5.2–119 μm) and related variables at 11 stations in the surface layer (0–20 m) of the Kuroshio region of the western North Pacific, where strong current causes dynamic hydrographic and ecological conditions. PSD slopes (range –3.2 to –4.2), derived from the power law model, were steeper at onshore stations and flatter at oligotrophic stations located offshore and at lower latitudes. Notably, slopes tended to become steeper with increasing chlorophyll a concentration, opposing the generally observed relationship between the two variables, whereas they became flatter with increasing transparent exopolymer particle (TEP) concentration. Possible explanations of the above results are localized occurrence of nanophytoplankton and TEP facilitation of particle aggregation. The results support the hypothesis that PSD slopes are controlled by a multitude of factors, including phytoplankton community dynamics and aggregation processes. To determine whether TEP-induced particle aggregation enhances or suppresses carbon export, we need a better understanding of the nature (porosity, density, and sinking velocity) of aggregates in oligotrophic oceans

    A blue-shifted anion channelrhodopsin from the Colpodellida alga Vitrella brassicaformis

    Get PDF
    Microbial rhodopsins, a family of photoreceptive membrane proteins containing the chromophore retinal, show a variety of light-dependent molecular functions. Channelrhodopsins work as light-gated ion channels and are widely utilized for optogenetics, which is a method for controlling neural activities by light. Since two cation channelrhodopsins were identified from the chlorophyte alga Chlamydomonas reinhardtii, recent advances in genomic research have revealed a wide variety of channelrhodopsins including anion channelrhodopsins (ACRs), describing their highly diversified molecular properties (e.g., spectral sensitivity, kinetics and ion selectivity). Here, we report two channelrhodopsin-like rhodopsins from the Colpodellida alga Vitrella brassicaformis, which are phylogenetically distinct from the known channelrhodopsins. Spectroscopic and electrophysiological analyses indicated that these rhodopsins are green- and blue-sensitive pigments (lambda(max) = similar to 550 and similar to 440 nm) that exhibit light-dependent ion channeling activities. Detailed electrophysiological analysis revealed that one of them works as a monovalent anion (Cl-, Br- and NO3-) channel and we named it V. brassicaformis anion channelrhodopsin-2, VbACR2. Importantly, the absorption maximum of VbACR2 (similar to 440 nm) is blue-shifted among the known ACRs. Thus, we identified the new blue-shifted ACR, which leads to the expansion of the molecular diversity of ACRs

    Muscle satellite cells adopt divergent fates: a mechanism for self-renewal?

    Get PDF
    Growth, repair, and regeneration of adult skeletal muscle depends on the persistence of satellite cells: muscle stem cells resident beneath the basal lamina that surrounds each myofiber. However, how the satellite cell compartment is maintained is unclear. Here, we use cultured myofibers to model muscle regeneration and show that satellite cells adopt divergent fates. Quiescent satellite cells are synchronously activated to coexpress the transcription factors Pax7 and MyoD. Most then proliferate, down-regulate Pax7, and differentiate. In contrast, other proliferating cells maintain Pax7 but lose MyoD and withdraw from immediate differentiation. These cells are typically located in clusters, together with Pax7-ve progeny destined for differentiation. Some of the Pax7+ve/MyoD-ve cells then leave the cell cycle, thus regaining the quiescent satellite cell phenotype. Significantly, noncycling cells contained within a cluster can be stimulated to proliferate again. These observations suggest that satellite cells either differentiate or switch from terminal myogenesis to maintain the satellite cell pool

    The significance of extended lymphadenectomy for colorectal cancer with isolated synchronous extraregional lymph node metastasis

    Get PDF
    SummaryBackground/ObjectiveThe significance of extended lymphadenectomy for colorectal cancer with extraregional lymph node metastasis, such as para-aortic lymph node metastasis, has not been established. The purpose of this study was to evaluate the significance of extended lymphadenectomy for colorectal cancer with synchronous isolated extraregional lymph node metastasis.MethodsBetween July 2004 and December 2013, 16 patients with synchronous extraregional lymph node metastasis without other organ metastases underwent curative resection and extended lymphadenectomy (R0 group). The clinical characteristics and survival outcomes of the R0 group were compared with those of 12 patients with extraregional lymph node metastasis who underwent palliative surgery (control group).ResultsIn the R0 group, the 5-year cancer-specific survival (CSS) rate was 70.3% and the 5-year relapse-free survival (RFS) rate was 60.5%. The 5-year CSS differed significantly between the R0 and control groups (70.3% vs. 12.5%; p = 0.0003). Univariate analyses revealed that the total numbers of metastatic lymph nodes and metastatic regional lymph nodes present were significantly associated with RFS (p = 0.019 for both).ConclusionFindings from our study suggest that extended lymphadenectomy for colorectal cancer with synchronous isolated extraregional lymph node metastasis might be effective in carefully selected patients
    • …
    corecore