142 research outputs found

    Dynamic change in respiratory resistance during inspiratory and expiratory phases of tidal breathing in patients with chronic obstructive pulmonary disease

    Get PDF
    Yasuhiro Yamauchi1,2, Tadashi Kohyama2, Taisuke Jo2, Takahide Nagase21Division of Health Promotion Center, 2Department of Respiratory Medicine, University of Tokyo, Tokyo, JapanBackground and objective: Chronic obstructive pulmonary disease (COPD) is characterized by persistent airflow limitation consisting of airway obstruction and parenchymal emphysema, with loss of elastic recoil. The forced oscillation technique can detect impairment of lung function by measuring lung impedance during normal tidal breathing. Respiratory resistance (Rrs) in COPD has been well-studied, but the differences in Rrs in the inspiratory and expiratory phases between mild and moderate COPD remain poorly understood. Since airway obstruction in COPD is known to change dynamically during tidal breathing and might affect Rrs, the differences in Rrs during tidal breathing between mild and moderate COPD were evaluated.Methods: Mild (n = 13) and moderate (n = 13) COPD patients were recruited at Tokyo University Hospital (Tokyo, Japan). Rrs was measured using MostGraph-01 (Chest MI, Inc, Tokyo, Japan), which depicted Rrs in a frequency- and respiratory cycle-dependent manner in three-dimensional graphics. Rrs was evaluated at 4–35 Hz during tidal breathing.Results: Rrs changed dynamically during tidal breathing in COPD. The mean Rrs values were significantly greater in the moderate COPD group than in the mild group. The maximal and minimal Rrs values at higher frequencies in the respiratory cycle were significantly greater in moderate COPD. In inspiratory–expiratory breath analysis, the maximal and minimal Rrs values at 20 Hz and 35 Hz were significantly greater in the moderate group, whereas at 4 Hz they did not differ significantly between the groups.Conclusion: Rrs changed dynamically during tidal breathing in patients with COPD. The Rrs values at higher frequencies were greater in moderate COPD than in mild COPD. Rrs at higher frequencies might reflect the degree of airway obstruction in tidal breathing in patients with COPD and might be a useful marker for evaluation of airway obstruction at an early stage of COPD.Keywords: COPD, airflow limitation, respiratory resistance, forced oscillation techniqu

    Impaired Anaphylactic Responses with Intact Sensitivity to Endotoxin in Mice Lacking a Platelet-activating Factor Receptor

    Get PDF
    Platelet-activating factor (PAF) is a potent phospholipid mediator with diverse biological activities in addition to its well-known ability to stimulate platelet aggregation. Pharmacologic studies had suggested a role for PAF in pregnancy, neuronal cell migration, anaphylaxis, and endotoxic shock. Here we show that disruption of the PAF receptor gene in mice caused a marked reduction in systemic anaphylactic symptoms. Unexpectedly, however, the PAF receptor–deficient mice developed normally, were fertile, and remained sensitive to bacterial endotoxin. These mutant mice clearly show that PAF plays a dominant role in eliciting anaphylaxis, but that it is not essential for reproduction, brain development, or endotoxic shock

    Efficacy of salvage therapies for advanced acral melanoma after anti-PD-1 monotherapy failure: a multicenter retrospective study of 108 Japanese patients

    Get PDF
    BackgroundAnti-programmed cell death protein 1 (PD-1) monotherapy is one of the standard systemic therapies for advanced melanoma; however, the efficacy of salvage systemic therapies after PD-1 monotherapy failure (PD-1 MF), particularly in acral melanoma (AM), the main clinical melanoma type in Japanese patients, is unclear. This study aimed to investigate the efficacy of salvage systemic therapies in Japanese patients with AM after PD-1 MF.Patients and methodsThe study included 108 patients with advanced AM (palm and sole, 72; nail apparatus, 36) who underwent salvage systemic therapy at 24 Japanese institutions. We mainly assessed the objective response rate (ORR), progression-free survival (PFS), and overall survival (OS).ResultsThirty-six (33%) patients received ipilimumab, 23 (21%) received nivolumab and ipilimumab (nivo/ipi), 10 (9%) received cytotoxic chemotherapy, 4 (4%) received BRAF and MEK inhibitors (BRAFi/MEKi), and the remaining 35 (32%) continued with PD-1 monotherapy after disease progression. The ORRs in the ipilimumab, nivo/ipi, cytotoxic chemotherapy, and BRAFi/MEKi groups were 8, 17, 0, and 100%, respectively. The nivo/ipi group showed the longest OS (median, 18.9 months); however, differences in ORR, PFS, and OS between the groups were insignificant. The OS in the nivo/ipi group was higher in the palm and sole groups than in the nail apparatus group (median: not reached vs. 8.7 months, p < 0.001). Cox multivariate analysis demonstrated that nail apparatus melanoma independently predicted unfavorable PFS and OS (p = 0.006 and 0.001). The total OS (from PD-1 monotherapy initiation to death/last follow-up) was insignificant between the groups.ConclusionNivo/ipi was not more effective than cytotoxic chemotherapy and ipilimumab after PD-1 MF in patients with advanced AM. The prognosis after PD-1 MF would be poorer for nail apparatus melanoma than for palm and sole melanoma

    Effects of various exogenous stimuli on the metabolism of eicosanids in the lung and airway : therole of 15-hydroxyeicosatetraenoic acid

    No full text
    報告番号: 乙11504 ; 学位授与年月日: 1993-11-24 ; 学位の種別: 論文博士 ; 学位の種類: 博士(医学) ; 学位記番号: 第11504号 ; 研究科・専攻: 医学系研究

    TGF-β Signaling in Lung Health and Disease

    No full text
    Transforming growth factor (TGF)-β is an evolutionarily conserved pleiotropic factor that regulates a myriad of biological processes including development, tissue regeneration, immune responses, and tumorigenesis. TGF-β is necessary for lung organogenesis and homeostasis as evidenced by genetically engineered mouse models. TGF-β is crucial for epithelial-mesenchymal interactions during lung branching morphogenesis and alveolarization. Expression and activation of the three TGF-β ligand isoforms in the lungs are temporally and spatially regulated by multiple mechanisms. The lungs are structurally exposed to extrinsic stimuli and pathogens, and are susceptible to inflammation, allergic reactions, and carcinogenesis. Upregulation of TGF-β ligands is observed in major pulmonary diseases, including pulmonary fibrosis, emphysema, bronchial asthma, and lung cancer. TGF-β regulates multiple cellular processes such as growth suppression of epithelial cells, alveolar epithelial cell differentiation, fibroblast activation, and extracellular matrix organization. These effects are closely associated with tissue remodeling in pulmonary fibrosis and emphysema. TGF-β is also central to T cell homeostasis and is deeply involved in asthmatic airway inflammation. TGF-β is the most potent inducer of epithelial-mesenchymal transition in non-small cell lung cancer cells and is pivotal to the development of tumor-promoting microenvironment in the lung cancer tissue. This review summarizes and integrates the current knowledge of TGF-β signaling relevant to lung health and disease

    YAP/TAZ Signaling as a Molecular Link between Fibrosis and Cancer

    No full text
    Tissue fibrosis is a pathological condition that is associated with impaired epithelial repair and excessive deposition of extracellular matrix (ECM). Fibrotic lesions increase the risk of cancer in various tissues, but the mechanism linking fibrosis and cancer is unclear. Yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ) are core components of the Hippo pathway, which have multiple biological functions in the development, homeostasis, and regeneration of tissues and organs. YAP/TAZ act as sensors of the structural and mechanical features of the cell microenvironment. Recent studies have shown aberrant YAP/TAZ activation in both fibrosis and cancer in animal models and human tissues. In fibroblasts, ECM stiffness mechanoactivates YAP/TAZ, which promote the production of profibrotic mediators and ECM proteins. This results in tissue stiffness, thus establishing a feed-forward loop of fibroblast activation and tissue fibrosis. In contrast, in epithelial cells, YAP/TAZ are activated by the disruption of cell polarity and increased ECM stiffness in fibrotic tissues, which promotes the proliferation and survival of epithelial cells. YAP/TAZ are also involved in the epithelial⁻mesenchymal transition (EMT), which contributes to tumor progression and cancer stemness. Importantly, the crosstalk with transforming growth factor (TGF)-β signaling and Wnt signaling is essential for the profibrotic and tumorigenic roles of YAP/TAZ. In this article, we review the latest advances in the pathobiological roles of YAP/TAZ signaling and their function as a molecular link between fibrosis and cancer
    corecore