53 research outputs found

    LOW BMI IS THE RISK OF CARDIO-VASCULAR MORTALITY WITHOUT PROGRESSION OF CKD

    Get PDF
    The paradoxical risk of BMI on mortality is known in CKD as well in dialysis populations, but studies of CVD risk in CKD including underweight is limited. We hypothesized lean CKD increase the CVD risk, contributing different factors from obese. 2,676 CKD patients recruited from 11 outpatients’ hospitals. BMI and estimated GFR (eGFR) were calculated, and change of eGFR and CVD mortality during 2 years were collected. Patients were divided by BMI under cut off value of normal, thus 7% grouped in lean subjects (BMI <18.5). Systolic blood pressure (sBP), albumin, hemoglobin, age and prevalence of diabetes were lower in lean BMI group compared to other subjects. However CVD history, urinary protein, baseline eGFR and smoking didn't differ between the groups. The lean BMI increased significantly the risk of CVD mortality, in spite of low prevalence of comorbidities and young age in unadjusted model (HR 2.38, 95%CI 1.49-5.21, p<0.01). This significance remained after adjusted for CVD risk factors, such as primary disease of CKD, age, sex, smoking, albumin, cholesterol, sBP and eGFR. On the other hand, BMI was not associated with the decline rate of eGFR. We concluded that BMI less than 18.5 was an independent predictor of CVD, and that BMI did not effect on CKD progression rate in Japanese CKD

    Large quantity production with extreme convenience of human SDF-1α and SDF-1β by a Sendai virus vector

    Get PDF
    AbstractWe describe a robust expression of human stromal cell-derived factor-1α (SDF-1α) and SDF-1β, the members of CXC-chemokine family, with a novel vector system based upon Sendai virus, a non-segmented negative strand RNA virus. Recombinant SDF-1α and SDF-1β were detected as a major protein species in culture supernatants, reached as high as 10 μg/ml. This remarkable enrichment of the products allowed us to use even the crude supernatants as the source for biological and antiviral assays without further concentration nor purification and will thus greatly facilitate to screen their genetically engineered derivatives

    Iron accumulation causes impaired myogenesis correlated with MAPK signaling pathway inhibition by oxidative stress

    Get PDF
    Skeletal muscle atrophy is caused by disruption in the homeostatic balance of muscle degeneration and regeneration under various pathophysiological conditions. We have previously reported that iron accumulation induces skeletal muscle atrophy via a ubiquitin ligase-dependent pathway. However, the potential effect of iron accumulation on muscle regeneration remains unclear. To examine the effect of iron accumulation on myogenesis, we used a mouse model with cardiotoxin (CTX)-induced muscle regeneration in vivo and C2C12 mice myoblast cells in vitro. In mice with iron overload, the skeletal muscles exhibited increased oxidative stress and decreased expression of satellite cell markers. Following CTX-induced muscle injury, these mice also displayed delayed muscle regeneration with a decrease in the size of regenerating myofibers, reduced expression of myoblast differentiation markers, and decreased phosphorylation of mitogen-activated protein kinase signaling pathways. In vitro, iron overload also suppressed the differentiation of C2C12 myoblast cells, but the suppression could be reversed by superoxide scavenging using tempol. Excess iron inhibits myogenesis via oxidative stress, leading to an imbalance in skeletal muscle homeostasis

    Inhibitory action of iron on erythropoietin via oxidative stress-HIF-2α pathway

    Get PDF
    Renal anemia is a major complication in chronic kidney disease (CKD). Iron supplementation, as well as erythropoiesis-stimulating agents, are widely used for treatment of renal anemia. However, excess iron causes oxidative stress via the Fenton reaction, and iron supplementation might damage remnant renal function including erythropoietin (EPO) production in CKD. EPO gene expression was suppressed in mice following direct iron treatment. Hypoxia-inducible factor-2 alpha (HIF-2α), a positive regulator of the EPO gene, was also diminished in the kidney of mice following iron treatment. Anemia-induced increase in EPO and HIF-2α expression was also inhibited by iron-treatment. In in vitro experiments using EPO-producing HepG2 cells, iron stimulation reduced the expression of the EPO gene, as well as HIF-2α. Moreover, iron treatment augmented oxidative stress, and iron-induced reduction of EPO and HIF-2α expression was restored by tempol, an anti-oxidant compound. HIF-2α interaction with the EPO promoter was inhibited by iron treatment, and was restored by tempol. These findings suggested that iron supplementation reduced EPO gene expression via an oxidative stress-HIF-2α-dependent signaling pathway

    Dietary iron restriction alleviates renal tubulointerstitial injury induced by protein overload in mice

    Get PDF
    Increased proteinuria causes tubulointerstitial injury due to inflammation in chronic kidney disease (CKD). Iron restriction exhibits protective effects against renal dysfunction; however, its effects against protein overload-induced tubulointerstitial damage remain unclear. Here, we investigated dietary iron restriction effect on tubulointerstitial damage in mice with protein-overload tubulointerstitial injury. Renal tubulointerstitial injury in animal model was induced by intraperitoneal injection of an overdose of bovine serum albumin (BSA). We divided mice into three groups: normal saline + normal diet (ND), BSA + ND, and BSA + iron-restricted diet (IRD). BSA overload induced renal tubulointerstitial injury in the ND mice, which was ameliorated in the IRD mice. Inflammatory cytokines and extracellular matrix mRNA expression was upregulated in BSA + ND mice kidneys and was inhibited by IRD. BSA-induced increase in renal superoxide production, NADPH oxidase activity, and p22phox expression was diminished in the IRD mice. IRD suppression increased BSA-induced renal macrophage infiltration. Moreover, BSA mice exhibited nucleotide-binding oligomerisation domain-like receptor pyrin domain-containing protein (NLRP) inflammasome activation, which was inhibited by IRD. Ferrous iron increased in kidneys with BSA overload and was inhibited by IRD. Thus, iron restriction inhibited oxidative stress and inflammatory changes, contributing to the protective effect against BSA overload-induced tubulointerstitial injury

    A pH-Adjustable Tissue Clearing Solution That Preserves Lipid Ultrastructures: Suitable Tissue Clearing Method for DDS Evaluation

    Get PDF
    Visualizing biological events and states to resolve biological questions is challenging. Tissue clearing permits three-dimensional multicolor imaging. Here, we describe a pH-adjustable tissue clearing solution, Seebest (SEE Biological Events and States in Tissues), which preserves lipid ultrastructures at an electron microscopy level. Adoption of polyethylenimine was required for a wide pH range adjustment of the tissue clearing solution.The combination of polyethylenimine and urea had a good tissue clearing ability for multiple tissues within several hours. Blood vessels stained with lipophilic carbocyanine dyes were deeply visible using the solution. Adjusting the pH of the solution was important to maximize the fluorescent intensity and suppress dye leakage during tissue clearing. The spatial distribution of doxorubicin and oxidative stress were observable using the solution. Moreover, spatial distribution of liposomes in the liver was visualized. Hence, the Seebest solution provides pH-adjustable, rapid, sufficient tissue clearing, while preserving lipid ultrastructures, which is suitable for drug delivery system evaluations

    Chemical tools for detecting Fe ions

    No full text
    Owing to its distinctive electrochemical properties with interconvertible multiple oxidation states, iron plays a significant role in various physiologically important functions such as respiration, oxygen transport, energy production, and enzymatic reactions. This redox activity can also potentially produce cellular damage and death, and numerous diseases are related to iron overload resulting from the dysfunction of the iron regulatory system. In this case, “free iron” or “labile iron,” which refers to iron ion weakly bound or not bound to proteins, causes aberrant production of reactive oxygen species. With the aim of elucidating the variation of labile iron involved in pathological processes, some chemical tools that can qualitatively and/or quantitatively monitor iron have been utilized to investigate the distribution, accumulation, and flux of biological iron species. Since iron ions show unique reactivity depending on its redox state, i.e., Fe²⁺ or Fe³⁺ (or transiently higher oxidative states), methods for the separate detection of iron species with different redox states are preferred to understand its physiological and pathological roles more in detail. The scope of this review article covers from classical chromogenic to newly emerging chemical tools for the detection of Fe ions. In particular, chemical tools applicable to biological studies will be presented

    Otitis Media with ANCA-associated Vasculitis: A New Concept and the Associated Criteria

    No full text
    corecore