116 research outputs found

    一酸化窒素リリース型インジェクタブルゲルの設計と虚血疾患への展開

    Get PDF
    科学研究費助成事業 研究成果報告書:挑戦的萌芽研究2016-2017課題番号 : 16K1562

    活性酸素を制御するバイオマテリアルの構築

    Get PDF
    科学研究費助成事業 研究成果報告書:基盤研究(S)2013-2017課題番号 : 2522020

    Suppression of NSAID-induced small intestinal inflammation by orally administered redox nanoparticles

    Get PDF
    Patients regularly taking non-steroidal anti-inflammatory drugs (NSAIDs) such as indomethacin (IND) have a risk of small intestinal injuries. In this study, we have developed an oral nanotherapeutics by using a redox nanoparticle (RNPO), which is prepared by self-assembly of an amphiphilic block copolymer that possesses nitroxide radicals as side chains of hydrophobic segment via ether linkage, to reduce inflammation in mice with IND-induced small intestinal injury. The localization and accumulation of RNPO in the small intestine were determined using fluorescent-labeled RNPO and electron spin resonance. After oral administration, the accumulation of RNPO in both the jejunum and ileum tissues was about 40 times higher than those of low-molecular-weight nitroxide radical compounds, and RNPO was not absorbed into the bloodstream via the mesentery, thereby avoiding the adverse effects of nitroxide radicals in the entire body. RNPO remarkably suppressed inflammatory mediators such as myeloperoxidase, superoxide anion, and malondialdehyde in the small intestines of IND-treated mice. Compared to low-molecular-weight nitroxide radical compounds, RNPO also significantly increased the survival rate of mice treated daily with IND. On the basis of these results, RNPO is promising as a nanotherapeutics for treatment of inflammation in the small intestine of patients receiving NSAIDs

    Immunologic Significance of CD80/CD86 or Major Histocompatibility Complex-II Expression in Thymic Epithelial Tumors

    Get PDF
    Introduction: Unresectable or recurrent thymic epithelial tumors (TETs) have a poor prognosis, and treatment options are limited. This study aimed to investigate the immunologic significance of CD80/CD86 or major histocompatibility complex class II (MHC-II) expression in TETs, as potential predictive biomarkers for immune checkpoint inhibitors (ICIs). Methods: We analyzed CD80, CD86, MHC class I (MHC-I), and MHC-II expression in TETs using immunohistochemistry and investigated their association with T-cell infiltration or ICI efficacy. In addition, we generated CD80- or MHC-II–expressing mouse tumors, evaluated the effects of ICIs, and analyzed tumor-infiltrating lymphocytes. We also performed tumor-rechallenge experiments in vivo. Results: We found that approximately 50% and 30% of TETs had high expression of CD80/CD86 and MHC-II in tumor cells, respectively, and that this expression was related to T-cell infiltration in clinical samples. In mouse models, both CD80 and MHC-II increase the effects of ICIs. In addition, senescent T cells and long-lived memory precursor effector T cells were significantly decreased and increased, respectively, in tumor-infiltrating lymphocytes from CD80-expressing tumors, and rechallenged tumors were completely rejected after the initial eradication of CD80-expressing tumors by programmed cell death protein 1 blockade. Indeed, patients with CD80-high thymic carcinoma had longer progression-free survival with anti–programmed cell death protein 1 monoclonal antibody. Conclusions: Half of the TETs had high expression of CD80/CD86 or MHC-II with high T-cell infiltration. These molecules could potentially increase the effects of ICIs, particularly inducing a durable response. CD80/CD86 and MHC-II can be predictive biomarkers of ICIs in TETs, promoting the development of drugs for such TETs

    Development of NIR Bioimaging Systems

    Get PDF
    Abstract. Fluorescence bioimaging is one of the most important technologies in the biomedical field. The most serious issue concerning current fluorescence bioimaging systems is the use of short wavelength light, UV or VIS, for the excitation of phosphors such as fluorescent proteins or quantum dots. The authors propose a fluorescence bioimaging system excited by near infrared light using rare-earth doped ceramic nanophosphors. The requirements for the nanophosphors are a designed emission scheme under the near infrared excitation, a controlled size between 10 and 200 nm and surface modification of the particles with a biofunctional polymer, which prevents particle agglomeration and non-specific interaction to nontargeting substances and gives them a specific interaction for the targeted objects. The preparation of the bioimaging probe and demonstrative imaging work are reported

    Chronic treatment with a smart antioxidative nanoparticle for inhibition of amyloid plaque propagation in Tg2576 mouse model of Alzheimer’s disease

    Get PDF
    The present study aimed to assess whether our newly developed redox nanoparticle (RNPN) that has antioxidant potential decreases Aβ levels or prevents Aβ aggregation associated with oxidative stress. The transgenic Tg2576 Alzheimer’s disease (AD) mice were used to investigate the effect of chronic ad libitum drinking of RNPN solution for 6 months, including memory and learning functions, antioxidant activity, and amyloid plaque aggregation. The results showed that RNPN-treated mice had significantly attenuated cognitive deficits of both spatial and non-spatial memories, reduced oxidative stress of lipid peroxide, and DNA oxidation. RNPN treatment increased the percent inhibition of superoxide anion and glutathione peroxidase activity, neuronal densities in the cortex and hippocampus, decreased Aβ(1-40), Aβ(1-42) and gamma (γ)-secretase levels, and reduced Aβ plaque observed using immunohistochemistry analysis and thioflavin S staining. Our results suggest that RNPN may be a promising candidate for AD therapy because of its antioxidant properties and reduction in Aβ aggregation, thereby suppressing its adverse side effect

    Recent Results from LHD Experiment with Emphasis on Relation to Theory from Experimentalist’s View

    Get PDF
    he Large Helical Device (LHD) has been extending an operational regime of net-current free plasmas towardsthe fusion relevant condition with taking advantage of a net current-free heliotron concept and employing a superconducting coil system. Heating capability has exceeded 10 MW and the central ion and electron temperatureshave reached 7 and 10 keV, respectively. The maximum value of β and pulse length have been extended to 3.2% and 150 s, respectively. Many encouraging physical findings have been obtained. Topics from recent experiments, which should be emphasized from the aspect of theoretical approaches, are reviewed. Those are (1) Prominent features in the inward shifted configuration, i.e., mitigation of an ideal interchange mode in the configuration with magnetic hill, and confinement improvement due to suppression of both anomalous and neoclassical transport, (2) Demonstration ofbifurcation of radial electric field and associated formation of an internal transport barrier, and (3) Dynamics of magnetic islands and clarification of the role of separatrix

    Extension of the operational regime of the LHD towards a deuterium experiment

    Get PDF
    As the finalization of a hydrogen experiment towards the deuterium phase, the exploration of the best performance of hydrogen plasma was intensively performed in the large helical device. High ion and electron temperatures, Ti and Te, of more than 6 keV were simultaneously achieved by superimposing high-power electron cyclotron resonance heating onneutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value β\left\langle \beta \right\rangle . The high β\left\langle \beta \right\rangle regime around 4% was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with a wide range of edge plasma parameters. The existence of a no impurity accumulation regime, where the high performance plasma is maintained with high power heating  >10 MW, was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region

    Design of Novel PEGylated Materials for Different Approaches to Cancer Immunotherapy

    No full text

    Engineering of poly(ethylene glycol) chain-tethered surfaces to obtain high-performance bionanoparticles

    No full text
    A poly(ethylene glycol)-b-poly[2-(N,N-dimethylamino)ethyl methacrylate] block copolymer possessing a reactive acetal group at the end of the poly(ethylene glycol) (PEG) chain, that is, acetal-PEG-b-PAMA, was synthesized by a proprietary polymerization technique. Gold nanoparticles (GNPs) were prepared using the thus-synthesized acetal-PEG-b-PAMA block copolymer. The PEG-b-PAMA not only acted as a reducing agent of aurate ions but also attached to the nanoparticle surface. The GNPs obtained had controlled sizes and narrow size distributions. They also showed high dispersion stability owing to the presence of PEG tethering chains on the surface. The same strategy should also be applicable to the fabrication of semiconductor quantum dots and inorganic porous nanoparticles. The preparation of nanoparticles in situ, i.e. in the presence of acetal-PEG-b-PAMA, gave the most densely packed polymer layer on the nanoparticle surface; this was not observed when coating preformed nanoparticles. PEG/polyamine block copolymer was more functional on the metal surface than PEG/polyamine graft copolymer, as confirmed by angle-dependent x-ray photoelectron spectroscopy. We successfully solubilized the C60 fullerene into aqueous media using acetal-PEG-b-PAMA. A C60/acetal-PEG-b-PAMA complex with a size below 5 nm was obtained by dialysis. The preparation and characterization of these materials are described in this review
    corecore