2,326 research outputs found
Density-matrix renormalization group study of pairing when electron-electron and electron-phonon interactions coexist: effect of the electronic band structure
Density-matrix renormalization group is used to study the pairing when both
of electron-electron and electron-phonon interactions are strong in the
Holstein-Hubbard model at half-filling in a region intermediate between the
adiabatic (Migdal's) and antiadiabatic limits. We have found: (i) the pairing
correlation obtained for a one-dimensional system is nearly degenerate with the
CDW correlation in a region where the phonon-induced attraction is comparable
with the electron-electron repulsion, but (ii) pairing becomes dominant when we
destroy the electron-hole symmetry in a trestle lattice. This provides an
instance in which pairing can arise, in a lattice-structure dependent manner,
from coexisting electron-electron and electron-phonon interactions.Comment: 4 pages, 3 figures; to appear in Phys. Rev. Let
Mineralogy of Y-981971 LL Chondrite and Brecciation Processes of the LL Parent Body
第3回極域科学シンポジウム/第35回南極隕石シンポジウム 11月30日(金) 国立国語研究所 2階講
Single-component quasicrystalline nanocrystal superlattices through flexible polygon tiling rule
Quasicrystalline superlattices (QC-SLs) generated from single-component colloidal building blocks have been predicted by computer simulations but are challenging to reproduce experimentally. We discovered that 10-fold QC-SLs could self-organize from truncated tetrahedral quantum dots with anisotropic patchiness. Transmission electron microscopy and tomography measurements allow structural reconstruction of the QC-SL from the nanoscale packing to the atomic-scale orientation alignments. The unique QC order leads to a tiling concept, the “flexible polygon tiling rule,” that replicates the experimental observations. The keys for the single-component QC-SL formation were identified to be the anisotropic shape and patchiness of the building blocks and the assembly microscopic environment. Our discovery may spur the creation of various superstructures using anisotropic objects through an enthalpy-driven route
- …