62 research outputs found

    Loop Heat Pipe Operation with Thermoelectric Converters and Coupling Blocks

    Get PDF
    This paper presents theoretical and experimental studies on using thermoelectric converters (TECs) and coupling blocks to control the operating temperature of a miniature loop heat pipes (MLHP). The MLHP has two parallel evaporators and two parallel condensers, and each evaporator has its own integral compensation chamber (CC). A TEC is attached to each CC, and connected to the evaporator via a copper thermal strap. The TEC can provide both heating and cooling to the CC, therefore extending the LHP operating temperature over a larger range of the evaporator heat load. A bi-polar power supply is used for the TEC operation. The bipolar power supply automatically changes the direction of the current to the TEC, depending on whether the CC requires heating or cooling, to maintain the CC temperature at the desired set point. The TEC can also enhance the startup success by maintaining a constant CC temperature during the start-up transient. Several aluminum coupling blocks are installed between the vapor line and liquid line. The coupling blocks serve as a heat exchanger which preheats the cold returning liquid so as to reduce the amount of liquid subcooling, and hence the power required to maintain the CC at the desired set point temperature. This paper focuses on the savings of the CC control heater power afforded by the TECs when compared to traditional electric heaters. Tests were conducted by varying the evaporator power, the condenser sink temperature, the CC set point temperature, the number of coupling blocks, and the thermal conductance of the thermal strap. Test results show that the TECs are able to control the CC temperature within k0.5K under all test conditions, and the required TEC heater power is only a fraction of the required electric heater power

    Testing of a Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers for Space Applications

    Get PDF
    Thermal performance of a miniature loop heat pipe (MLHP) with two evaporators and two condensers is described. A comprehensive test program, including start-up, high power, low power, power cycle, and sink temperature cycle tests, has been executed at NASA Goddard Space Flight Center for potential space applications. Experimental data showed that the loop could start with heat loads as low as 2W. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of l00W to 120W, and could recover from a dry-out by reducing the heat load to evaporators. Low power test results showed the loop could work stably for heat loads as low as 1 W to each evaporator. Excellent adaptability of the MLHP to rapid changes of evaporator power and sink temperature were also demonstrated

    Capillary Limit of a Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers

    Get PDF
    An experimental investigation of a miniature loop heat pipe with multiple evaporators and multiple condensers were conducted in order to evaluate its capillary limit. The experimental tests were conducted by varying heat load to one or both evaporators, with and without active temperature control of compensation chamber (CC) using the thermoelectric devices, and variable tilts between the evaporators and the CCs. The physical process of the loop and thermal conductance of the heat leak from evaporator to (CC) were discussed based on the test results. The difference of the temperature profiles between with and without active control of CC temperature was evaluated. The effect of the gravity on capillary limit and CC temperature was also evaluated by comparing the test result in horizontal position with that in vertical position. The loop recovery after capillary limit was exceeded was also described

    Gravity Effect on Capillary Limit in a Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers

    Get PDF
    This paper describes the gravity effect on heat transport characteristics in a minia6re loop heat pipe with multiple evaporators and multiple condensers. Tests were conducted in three different orientations: horizontal, 45deg tilt, and vertical. The gravity affected the loop's natural operating temperature, the maximum heat transport capability, and the thermal conductance. In the case that temperatures of compensation chambers were actively controlled, the required control heater power was also dependent on the test configuration. In the vertical configuration, the secondary wick was not able to pump the liquid from the CC to the evaporator against the gravity. Thus the loop could operate stably or display some peculiar behaviors depending on the initial liquid distribution between the evaporator and the CC. Because such an initial condition was not known prior to the test, the subsequent loop performance was unpredictable

    Using Thermoelectric Converters for Loop Heat Pipe Operating Temperature Control

    Get PDF
    This paper describes an experimental study to investigate the effectiveness of using thermoelectric converters (TECs) to control the loop heat pipe (LHP) operating temperature. Tests were conducted on an LHP having two evaporators and two condensers. Each evaporator has its own integral compensation chamber (CC). One side of the TEC is attached to the CC, and the other side is connected to the evaporator through a copper thermal strap. A bi-polar power supply is used to provide the power for the operation of each TEC. The bipolar supply will automatic change the direction of the current to the TEC depending on whether the CC requires heating or cooling in order to maintain its temperature at the desired set point. When cooling the CC, the heat pumped by the TEC plus the power needed to operate the TEC is dissipated to the evaporator, and is ultimately transmitted to the condenser. When heating the CC, the TEC can draw heat from the evaporator to supplement the required control heater power. Test results showed that the TEC could control the LHP operating temperature within h1K of the set point temperature. The control heater power required for TEC operation was also much less than that of using electrical heaters

    Numerama study on heat-transfer characteristics of loop heat pipe evaporator using three-dimensional pore network model

    Get PDF
    An important consideration while designing the shape of a capillary evaporator is the phase distribution in the wick. However, the distribution depends on the working fluids and porous materials. This study investigates the heat-transfer characteristics of a loop heat pipe (LHP) evaporator by using a threedimensional pore network model with a dispersed pore size wick. The simulation considers saturated and unsaturated wicks. A stainless steel (SS)-ammonia, polytetrafluoroethylene (PTFE)-ammonia, and copper-water LHP are simulated. The copper-water LHP has the highest transition heat flux to the unsaturated wick. When the optimum evaporator shape of the copper-water LHP is designed, it is reasonable to assume that the phase state is saturated. On the other hand, for the ammonia LHP design, the state is assumed to be unsaturated. Simulation results show the heat-transfer structure in the evaporator and indicate that the applied heat flux concentrates on the three-phase contact line (TPCL) within the case, wick, and grooves. An evaporator configuration with circumferential and axial grooves is simulated to investigate the effect of the TPCL length. Results indicate that the optimum shape can be realized by varying the TPCL length. The proposed method is expected to serve as a simple approach to design an evaporator

    Thermal Performance of a Low-Cost Loop Heat Pipe

    Get PDF
    This paper presents the thermal performance of a low-cost loop heat pipe (LHP) consisting of a single evaporator and a single condenser. The evaporator has an outer diameter of 14mm and a length of 50mm. An organic solvent was used as the working fluid. The low-cost LHP was made possible through a new manufacturing process. The LHP demonstrated excellent performance over heat loads ranging from 1W to 15OW and sink temperatures between 253K and 293K. Tests performed included start-up, power cycle, sink temperature cycle, high power and low power operations. No performance anomalies were seen

    Numerical Study of Thermal Performance of a Capillary Evaporator in a Loop Heat Pipe with Liquid-Saturated Wick

    Get PDF
    Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick, and the subcooling in the compensation chamber (CC) on the thermal performance of the evaporator. A pore network model with a distribution of pore radii was used to simulate liquid flow in the porous structure of the wick. To obtain high accuracy, fine meshes were used at the boundaries among the casing, the wick, and the grooves. Distributions of temperature, pressure, and mass flow rate were compared for polytetra-fluoroethylene (PTFE) and stainless steel wicks. The thermal conductivity of the wick and the contact area between the casing and the wick significantly impacted thermal performance of the evaporator heat-transfer coefficient and the heat leak to the CC. The 3D analysis provided highly accurate values for the heat leak; in some cases, the heat leaks of PTFE and stainless steel wicks showed little differences. In general, the heat flux is concentrated at the boundaries between the casing, the wick, and the grooves; therefore, thermal performance can be optimized by increasing the length of the boundary

    Thermal Vacuum Testing of a Multi-Evaporator Miniature Loop Heat Pipe

    Get PDF
    Under NASA's New Millennium Program Space Technology 8 Project, four experiments are being developed for future small system applications requiring low mass, low power, and compactness. GSFC is responsible for developing the Thermal Loop experiment, which is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and condensers. The objective is to validate the operation of an MLHP, including reliable start-ups, steady operation, heat load sharing, and tight temperature control over the range of 273K to 308K. An MLHP Breadboard has been built and tested for 1200 hours under the laboratory environment and 500 hours in a thermal vacuum chamber. Results of the TV tests are presented here
    • …
    corecore