30 research outputs found

    The Role of Dorsal Raphe Serotonin Neurons in the Balance between Reward and Aversion

    Get PDF
    Background: Reward processing is fundamental for animals to survive and reproduce. Many studies have shown the importance of dorsal raphe nucleus (DRN) serotonin (5-HT) neurons in this process, but the strongly correlative link between the activity of DRN 5-HT neurons and rewarding/aversive potency is under debate. Our primary objective was to reveal this link using two different strategies to transduce DRN 5-HT neurons. Methods: For transduction of 5-HT neurons in wildtype mice, adeno-associated virus (AAV) bearing the mouse tryptophan hydroxylase 2 (TPH2) gene promoter was used. For transduction in Tph2-tTA transgenic mice, AAVs bearing the tTA-dependent TetO enhancer were used. To manipulate the activity of 5-HT neurons, optogenetic actuators (CheRiff, eArchT) were expressed by AAVs. For measurement of rewarding/aversive potency, we performed a nose-poke self-stimulation test and conditioned place preference (CPP) test. Results: We found that stimulation of DRN 5-HT neurons and their projections to the ventral tegmental area (VTA) increased the number of nose-pokes in self-stimulation test and CPP scores in both targeting methods. Concomitantly, CPP scores were decreased by inhibition of DRN 5-HT neurons and their projections to VTA. Conclusion: Our findings indicate that the activity of DRN 5-HT neurons projecting to the VTA is a key modulator of balance between reward and aversion

    Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion

    Get PDF
    不快感を誘発するセロトニン神経を発見 --セロトニン神経の多様性が明らかに--. 京都大学プレスリリース. 2022-12-23.Appropriate processing of reward and aversive information is essential for survival. Although a critical role of serotonergic neurons in the dorsal raphe nucleus (DRN) in reward processing has been shown, the lack of rewarding effects with selective serotonin reuptake inhibitors (SSRIs) implies the presence of a discrete serotonergic system playing an opposite role to the DRN in the processing of reward and aversive stimuli. Here, we demonstrated that serotonergic neurons in the median raphe nucleus (MRN) of mice process reward and aversive information in opposite directions to DRN serotonergic neurons. We further identified MRN serotonergic neurons, including those projecting to the interpeduncular nucleus (5-HTMRN→IPN), as a key mediator of reward and aversive stimuli. Moreover, 5-HT receptors, including 5-HT2A receptors in the interpeduncular nucleus, are involved in the aversive properties of MRN serotonergic neural activity. Our findings revealed an essential function of MRN serotonergic neurons, including 5-HTMRN→IPN, in the processing of reward and aversive stimuli

    Association of dietary fiber intake with subsequent fasting glucose levels and indicators of adiposity in school-age Japanese children

    Get PDF
    Abstract Objective: To evaluate the relationships of fiber intake with subsequent body mass index SD-score, waist-to-height ratio, and serum fasting glucose levels among school-age Japanese children. Design: A prospective study of school-age Japanese children. Participants were followed from 6–7 to 9–10 years of age (follow-up rate: 92.0%). Fiber intake was assessed using a validated food frequency questionnaire. Serum fasting glucose was measured by a hexokinase enzymatic method. Using a general linear model, the associations between dietary fiber intake at baseline and body mass index SD-score, waist-to-height ratio, and serum levels of fasting glucose at follow-up were evaluated after considering potential confounding factors. Setting: Public elementary schools in a city in Japan Participants: A total of 2,784 students. Results: The estimated means for fasting glucose at 9–10 years of age were 86.45, 85.68, 85.88, and 85.58 mg/dl in the lowest, second, third, and highest quartile of fiber intake at 6–7 years of age, respectively (p= 0.033, trend p= 0.018). Higher fiber intake at 6–7 years of age was associated with lower waist-to-height ratio at 9–10 years of age (trend p= 0.023). The change in fiber intake was inversely associated with concurrent change of body mass index SD-score (trend p= 0.044). Conclusion: These results suggest that dietary fiber intake may be potentially effective to limit excess weight gain and lower glucose levels during childhood

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    TRPM2 confers susceptibility to social stress but is essential for behavioral flexibility

    Get PDF
    Transient receptor potential melastatin 2 (TRPM2) is a Ca²⁺-permeable, nonselective cation channel and a member of the TRP channel superfamily that acts as a sensor of intracellular redox states. TRPM2 is widely distributed in many tissues and highly expressed in the brain, but the physiological roles of TRPM2 in the central nervous system remain unclear. In this study, TRPM2-deficient mice were examined in a series of behavioral tests. TRPM2-deficient mice did not significantly differ from wild-type littermates in muscle strength, light/dark transition test, rotarod, elevated plus maze, social interaction, prepulse inhibition, Y-maze, forced swim test, cued and contextual fear conditioning, and tail suspension test. In the Barnes circular maze, TRPM2-deficient mice learned the fixed escape box position at similar extent to wild-type littermates, suggesting normal reference memory. However, performance of the first reversal trial and probe test were significantly impaired in TRPM2-deficient mice. In the T-maze delayed alternation task, TRPM2 deficiency significantly reduced choice accuracy. These results indicate that TRPM2-deficient mice shows behavioral inflexibility. Meanwhile, social avoidance induced by repeated social defeat stress was significantly attenuated in TRPM2-deficient mice, suggesting that TRPM2 deficiency confers stress resiliency. Our findings indicate that TRPM2 plays an essential role in maintaining behavioral flexibility but it increases susceptibility to stress
    corecore