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Abstract 1 

Viral gene delivery is one of the most versatile experimental techniques for elucidating 2 

the mechanisms underlying brain dysfunction, such as mental and neurodegenerative 3 

disorders. Due to the complexity of the brain, expression of genetic tools, such as 4 

channelrhodopsin and calcium sensors, often has to be restricted to a specified cell type 5 

within a circuit implicated in these disorders. Only a handful of promoters targeting 6 

neuronal subtypes are currently used for viral gene delivery. Many of them use human 7 

genomic elements although used typically in mice or rats. Here, we isolated conserved 8 

promoter regions of several subtype-specific genes from the macaque genome and 9 

investigated their functionality in the mouse brain when used within lentiviral vectors 10 

(LVVs). Immunohistochemical analysis revealed that transgene expression induced by 11 

the promoter sequences for somatostatin (SST), cholecystokinin (CCK), parvalbumin 12 

(PV), serotonin transporter (SERT), vesicular acetylcholine transporter (vAChT), 13 

substance P (SP) and proenkephalin (PENK) was largely colocalized with specific marker 14 

for the targeted neuronal populations. Moreover, by combining these results with in silico 15 

predictions of transcription factor binding to the isolated sequences, we identified 16 

transcription factors possibly underlying cell-type specificity. These findings lay a 17 

foundation for the expansion of the current toolbox of promoters suitable for elucidating 18 

these neuronal phenotypes. 19 

20 
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Introduction 1 

Abnormal neuronal activity causes the symptoms of a variety of neuropsychiatric 2 

disorders, including Alzheimer’s disease, Parkinson’s disease, autism, schizophrenia, and 3 

major depression1-5. Genetic tools such as optogenetic or chemogenetic actuators and 4 

sensors for intracellular molecules6-10, are among the most versatile experimental 5 

techniques for elucidating the mechanisms underlying these disorders. Indeed, 6 

application of these tools in rodents has revealed the neural mechanisms contributing to 7 

these disorders 11-15. At the same time, monkeys have ability to perform complex tasks 8 

due to their high intelligence. Moreover, the brain structures of humans and monkeys are 9 

very similar, especially the cerebral cortex, which plays a key role in memory, learning, 10 

emotion, and cognition. Some brain nuclei, such as the pulvinar nucleus, is present only 11 

in primates but not in rodents. Furthermore, genome sequence of monkeys is highly 12 

homologous to that of humans17, 18. Therefore, the application of neuron type-specific 13 

genetic tools to monkeys should not only help to extrapolate observations made in rodents 14 

to humans, but also provides deep insights into the mechanisms of brain function in health 15 

and disease. 16 

It is necessary to reach sufficient level of expression of genetic tools in a specific 17 

population of neurons for manipulation and monitoring of its neural activity19-23. In 18 

rodents, especially in mice, this has been often achieved by utilizing Cre-driver lines and 19 

Cre-dependent adeno-associated viral vectors24, 25. On the other hand, in other species 20 

where a Cre-driver line is not readily available, such as in monkeys, viral vectors with 21 

cell-type specific promoters are indispensable for achieving cell-type specific transgene 22 
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expression. 1 

In this context, human synapsin (hSyn) and mouse calmodulin kinase II α (mCaMKIIα) 2 

promoters were used to target neurons in monkeys26-31. Recently, Stauffer et al. have 3 

demonstrated that a short tyrosine hydroxylase (TH) promoter can transduce dopamine 4 

neurons with high neuron-type specificity, and have optogenetically manipulated their 5 

activity32. El-Shamayleh et al. have shown that an L7 promoter allows specific expression 6 

in Purkinje cells in the cerebellum and is sufficiently active for optogenetic manipulation 7 

of these cells in monkeys33. Interestingly, both of these reports employed promoter 8 

sequences that were isolated from rodents and were effective in monkeys. Binding motifs 9 

of transcription factors, which underlie cell-type specific promoter activity, are highly 10 

conserved across species34. Moreover, a systematic comparison of mammalian genomes 11 

has revealed that promoter regions are evolutionarily conserved compared to intronic 12 

regions or the whole genome35. These results indicate that upstream regions of protein 13 

coding sequences are good candidates for development of cell-type specific promoters 14 

active across species. Indeed, we have shown that lentiviral vectors (LVVs) with a 2-kb 15 

rodent tryptophan hydroxylase 2 (TPH2) promoters, which is well conserved across 16 

species, are capable of inducing sufficient expression of optogenetic tools specific to 17 

rodent serotonergic neurons for manipulation of these neurons in vivo23. These 18 

considerations prompted us to screen the activity of evolutionarily conserved promoter 19 

sequences from monkeys in the mouse. 20 

In this study, we isolated promoter candidates for several well-established neuronal 21 

markers36-40, somatostatin (SST), cholecystokinin (CCK), parvalbumin (PV), serotonin 22 
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transporter (SERT), choline acetyltransferase (ChAT), substance P (SP), and enkephalin 1 

(PENK), from the genome of crab-eating macaques (Macaca fascicularis) through 2 

comparative analysis of upstream regions between mice and monkeys. We investigated 3 

the promoter activity of the isolated sequences in mice using LVVs23,41 and found that 4 

several of these promoter candidates were capable of inducing transgene expression in a 5 

neuron-type specific manner. 6 

 7 

Materials and methods 8 

Animals 9 

Adult male and female C57BL/6J mice (8-16 weeks old; Nihon SLC, Shizuoka, Japan) 10 

were used in this study. All animal experiments were performed in accordance with the 11 

ethical guidelines of the Kyoto University Animal Experimentation Committee, and were 12 

approved by the Kyoto University Animal Experimentation Committee. Mice were 13 

housed in groups (no more than 6 mice in an individual cage) with free access to food and 14 

water and kept under constant ambient temperature (24 ± 1 °C) and humidity (55 ± 10 %) 15 

and a 12-hr light-dark cycle. The sample size was similar to that in previous report23 and 16 

was estimated to be sufficient to determine the specificity of each promoters. Mice were 17 

randomly assigned to experimental groups. Blinding was not performed. 18 

 19 

Isolation of the upstream sequence of neuronal markers and vector construction 20 

Genomic DNA of crab-eating macaque (Macaca fascicularis) was isolated from blood by 21 

using QIAamp DNA Blood Minikit (Qiagen, Hilden, Germany). Upstream sequences of 22 
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somatostatin (SST), cholecystokinin (CCK), parvalbumin (PV), serotonin transporter 1 

(SERT), vesicular acetylcholine transporter (vAChT), substance P (SP) and enkephalin 2 

(PENK) were isolated from crab-eating macaque genomic DNA by PCR. PCR was 3 

performed with KOD FX Neo (Toyobo, Osaka, Japan) or Q5 DNA polymerase (New 4 

England Biolabs, Ipswich, MA, USA). Sequences of primers are shown in Supplementary 5 

Table 1. PCR-amplified upstream sequences were digested with MluI and NotI and ligated 6 

into the lentiviral plasmid backbone, pTYF-super-mTPH2-Venus-WPRE23, which was 7 

pre-digested with MluI and NotI. All ligation reactions were performed with DNA 8 

Ligation Kit Mighty Mix (Takara Bio, Otsu, Japan). Transgene Venus42 is a variant of 9 

eYFP and was used as reporter gene in this study. The structure of resulting constructs 10 

was pTYF-5xGal4-binding sequences-promoter-Venus-IRES-Gal4p65-WPRE, thus 11 

incorporating the positive enhancer feedback loop41, 43. The plasmids containing the 12 

isolated promoters will be deposited to Addgene. 13 

 14 

Lentiviral vector production 15 

Production and purification of LVVs were performed as described previously23, 44. Briefly, 16 

LVVs were produced by transient cotransfection of Lenti-X 293T cells (Clontech, 17 

Mountain View, CA, USA) with a pTYF shuttle vector45 (15.5 µg), a packaging vector 18 

pNHP (31.2 µg), and a plasmid for envelope protein expression (vesicular stomatitis virus 19 

glycoprotein, VSVG, 12.4 µg). After 16-18 hrs of incubation, the supernatant was 20 

harvested, and fresh media was added to the culture. After 30 hrs of incubation, the 21 

supernatant was collected and mixed with that of the first harvest. The supernatants were 22 
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filtered through a 0.45-µm pore PVDF membrane (Millex-HV, Merck Millipore, Billerica, 1 

MA, USA) and ultracentrifuged for 2 hr 40 min at 20,000 rpm in an SW-28 rotor 2 

(Beckman-Coulter, Brea, CA, USA). The resulting pellet was suspended in phosphate 3 

buffered saline (PBS) and stored at -80 °C. The titers of LVVs were measured by p24 4 

ELISA kit (R&D systems, Minneapolis, MN, USA), and estimated to be approximately 5 

1×1010 IU/mL. 6 

 7 

Stereotaxic surgery 8 

Stereotaxic surgeries were conducted using a small animal stereotaxic frame (Narishige, 9 

Tokyo, Japan) and performed according to the Brain Atlas46. The sites of injections were 10 

selected based on the known expression pattern of each of the target genes. Mice were 11 

anesthetized with sodium pentobarbital (50 mg/kg, i.p., Kyoritsu Seiyaku, Tokyo, Japan). 12 

Under pentobarbital anesthesia, all mice were injected with 1 μL of LVV. The following 13 

coordinates (in mm) were used for stereotactic injections: SST and CCK, cingulate cortex 14 

(AP +0.98 mm, ML 0.3 mm, DV +2.0 mm from bregma) and M2 cortex (AP +0.74 mm, 15 

ML 1.0 mm, DV +1.5 mm from bregma); PV, thalamic reticular nucleus (AP -0.70 mm, 16 

ML 1.1 mm, DV +4.2 mm from bregma); SERT, dorsal raphe nucleus (AP -4.3 mm, ML 17 

1.2 mm, DV +3.6 mm, 20° from bregma); vAChT, lateral dorsal tegmentum (AP -5.02 18 

mm, ML 0.5 mm, DV +3.3 mm from bregma); and SP and PENK, striatum (AP +0.38 19 

mm, ML 2.0 mm, DV +3.5 mm from bregma). 20 

 21 

Immunohistochemistry 22 
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One week after LVV injection, mice were perfused transcardially with PBS and 4% 1 

paraformaldehyde (Nacalai Tesque, Kyoto, Japan) in 0.1 M phosphate buffer (pH 7.4) 2 

under pentobarbital anesthesia. The brain was removed from the skull, and stored in 15 % 3 

sucrose in 0.01 M PBS at 4°C overnight, and 30-μm-thick frozen sections were prepared 4 

by freezing microtome (Leica CM3050S; Leica Biosystems, Nussloch, Germany) and 5 

stored at -80°C until immunohistochemical processing. For immunohistochemistry, the 6 

sections were immersed in 0.25% Triton-X 100 (Nacalai Tesque) for permeabilization 7 

and then incubated with each primary antibody under appropriate conditions. Details of 8 

the primary antibodies and immunostaining conditions are described in Supplementary 9 

Table 2. After washing with PBS, the glass slides were incubated in secondary antibody 10 

solution, specifically Alexa Fluor 488- or 594-labeled donkey anti-rabbit, anti-goat, anti-11 

sheep and anti-rat IgG (1:200; Life Technologies, Carlsbad, CA, USA) for 2 hrs at room 12 

temperature. After washing with PBS, sections were mounted with Fluoromount Plus 13 

(Diagnostic Biosystems, Pleasanton, CA, USA). Immunoreactivity was visualized by 14 

confocal microscopy (Fluoview FV10i, Olympus, Tokyo, Japan). In some cases, antigen 15 

retrieval by citrate buffer or HistoVT One (Nacalai Tesque) was performed before 16 

permeabilization (see Supplementary Table 2). 17 

 18 

In silico prediction and comparison of transcription factor binding 19 

An open-access database of transcription factor binding profiles, ConSite47, was used for 20 

in silico prediction of transcription factor (TF) binding to the sequence. In this method, 21 

the program scans the isolated promoter sequences to examine whether a set of TF binds 22 
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to each fragment of sequences or not based on a matrix tabulating observed nucleotides 1 

in each position of the protein-DNA interface47, and calculates the scores which are 2 

normalized to 0-100% range. For all isolated sequences, the TF score cutoff was set to 3 

80%. 4 

 5 

Data Analysis 6 

Specificity was evaluated by the colocalization of Venus with a canonical reporter gene 7 

for each cell type. All values were expressed as mean ± standard error of mean. 8 

 9 

 10 

Results 11 

Isolation and functional validation of promoter candidates for SST, CCK, and PV 12 

neurons 13 

 In the cerebral cortex, there are excitatory and inhibitory neurons. Specific expression 14 

using viral vectors in excitatory and inhibitory neurons is often achieved by the CaMKIIα 15 

promoter and the Dlx promoter, respectively48-50. However, inhibitory neurons are further 16 

classified into several subtypes, including somatostatin (SST)-, cholecystokinin (CCK)-, 17 

and parvalbumin (PV)-positive neurons. Importantly, short promoters that are active 18 

specifically in these subtypes of inhibitory neurons have not yet been identified in any 19 

species including mice. First, we identified conserved promoter region upstream of the 20 

SST gene through homology analysis of mice and crab-eating macaque using zPicture51 21 

(Fig. 1A). We found that sequence just upstream of the SST start codon was highly 22 
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conserved among these species. We produced LVVs bearing this conserved region 1 

upstream of Venus (LVV-SST-0.3 kb::Venus). One week after injection of LVV-SST-0.3 2 

kb::Venus into the cingulate cortex of mice, the specificity of the promoter candidate was 3 

evaluated by immunohistochemical analysis. We found that 93.8 ± 4.1 % of Venus-4 

immunoreactive cells were also SST-immunoreactive (n = 4 mice; Fig.1B, C). This result 5 

indicates that this conserved region is active specifically in SST-positive neurons. 6 

Similarly, we isolated promoter candidates containing conserved promoter regions 7 

upstream of the CCK gene (Fig. 2A). LVVs containing these promoters (LVV-CCK-0.5 8 

kb::Venus and LVV-CCK-3.9 kb::Venus) were injected into the cingulate cortex of mice. 9 

One week after viral injection, the specificity of the promoters was analyzed 10 

immunohistochemically. A large proportion of GFP expression was confined to CCK-11 

immunoreactive cells in animals injected with LVV-CCK-0.5 kb::Venus (colocalization 12 

rate 88.0 ± 3.3 %, n = 3 mice; Fig. 2B, C), whereas GFP expression was observed not 13 

only in CCK-immunonegative cells but also other cells in animals injected with LVV-14 

CCK-3.9 kb::Venus (colocalization rate 50.9 ± 3.3 %, n = 3 mice; Fig. 2D, E). These 15 

results suggest that CCK neuron-specific promoter activity is coded in the proximal 16 

region of the upstream region of the CCK gene and addition of a more distal region leads 17 

to nonspecific transgene expression. Further, we isolated a conserved promoter region 18 

upstream of the PV gene. LVVs bearing two promoter candidates (LVV-PV-0.8 kb::Venus 19 

and LVV-PV-1.8 kb::Venus) were injected into the reticular nucleus, because PV-positive 20 

neurons are more densely distributed in the reticular nucleus than in the cerebral cortex. 21 

Immunohistochemical analysis revealed that 84.0 ± 1.4 % of GFP-immunoreactive cells 22 
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also expressed PV in animals injected with LVV-PV-0.8 kb::Venus (n = 3 mice; Fig. 3B, 1 

C), whereas 79.3 ± 0.5 % of GFP-immunoreactive cells were immunopositive for PV in 2 

animals injected with LVV-PV-1.8 kb::Venus (n = 3 mice; Fig. 3D, E). These results 3 

indicate that as little as 0.8 kb upstream region of the PV gene is sufficient for preferential 4 

expression in this neuronal subtype. 5 

We investigated whether the isolated promoters induce strong transgene expression so 6 

that fluorescence of transgene Venus is detectable without immunohistochemical 7 

enhancement. We found that strong Venus fluorescence was induced by LVV-SST-8 

0.3kb::Venus, LVV-CCK-0.5kb::Venus, or LVV-PV-0.8kb::Venus (Supplementary Fig. 9 

S1A-C). 10 

 11 

Isolation and functional validation of promoter candidates for serotonergic and 12 

cholinergic neurons 13 

 Serotonin and acetylcholine transmitter systems are critical for a variety of brain 14 

functions such as mood regulation, learning, reinforcement of behavior, and nociception23, 15 

52, 53. We previously reported that the proximal promoter upstream of the mouse and rat 16 

TPH2 gene were specifically active in serotonergic neurons in mice and rats23, 41, 54. 17 

However, no selective promoter for primate serotonergic and cholinergic neurons has 18 

been reported. We identified conserved promoter region of the upstream of the serotonin 19 

transporter (SERT) gene (Fig. 4A). Two LVVs containing conserved promoter regions 20 

(LVV-SERT-0.5 kb::Venus and LVV-SERT-1.9 kb::Venus) were constructed and injected 21 

into the dorsal raphe nucleus, the largest serotonergic nucleus. Immunohistochemical 22 
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analysis revealed specific GFP expression in animals injected with the longer promoter 1 

(colocalization rate 93.8 ± 0.9 %, n = 3 mice; Fig. 4D, E), whereas the shorter was non-2 

selective (colocalization rate 56.3 ± 1.4 %, n = 3 mice; Fig. 4B, C). Similarly, we 3 

identified conserved promoter region upstream of the vesicular acetylcholine transporter 4 

(vAChT) gene, which is a marker of cholinergic neurons55. Two LVVs containing 5 

conserved promoter regions (LVV-vAChT-1.1 kb::Venus and LVV-vAChT-1.8 6 

kb::Venus) were tested in the latero-dorsal tegmental nucleus (LDTg). Similar to the 7 

result with the SERT promoters, the shorter promoter was less specific (colocalization 8 

with choline acetyl transferase, ChAT, at rate 52.3 ± 4.8 % n = 3 mice; Fig. 5B, C), while 9 

the longer promoter induced more specific GFP expression (colocalization rate 83.1 ± 10 

3.9 % n = 3 mice; Fig. 5D, E). 11 

Moreover, we determined whether these promoters are sufficiently strong for inducing 12 

detectable level of fluorescence of Venus. We found that Venus fluorescence induced by 13 

LVV-SERT-1.9kb::Venus was not detectable without immunohistochemical enhancement 14 

(Supplementary Fig. S1D), whereas that induced by LVV-vAChT-1.8kb::Venus was 15 

barely detectable (Supplementary Fig. S1E). 16 

 17 

Isolation and functional validation of promoter candidates for striatal medium spiny 18 

neurons 19 

The striatum is anatomically a part of the basal ganglia and plays a key role in motor 20 

function as well as decision making56-58. A large population of striatal neurons are medium 21 

spiny neurons (MSNs), which project into the endopeduncular nucleus (internal globus 22 
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pallidus), external globus pallidus, and substantia nigra pars reticulata56. There are two 1 

distinct clusters of MSNs; one expresses dopamine D1 receptors and substance P (SP) 2 

(D1-MSNs), and another expresses dopamine D2 receptors, adenosine A2A receptors and 3 

enkephalin (D2-MSNs). Previous reports have demonstrated that mouse promoters for SP 4 

and preproenkephalin (PENK) are specifically active in mouse D1-MSN and D2-MSN, 5 

respectively59.Although previous reports used relatively long sequences containing distal 6 

upstream region and part of coding region, we used conserved promoter region upstream 7 

of the SP and PENK genes which did not contain any coding region for minimizing the 8 

promoter length (Fig. 6A, 7A). Two LVVs containing conserved promoter regions 9 

upstream of the SP gene and more distal non-conserved region for comparison were 10 

created and injected to the mouse striatum. Immunohistochemical analysis revealed that 11 

both the longer and shorter promoters induced specific GFP expression in SP-positive 12 

neurons (LVV-SP-0.8 kb::Venus; colocalization rate 91.7 ± 3.8 %, n = 3 mice, Fig. 6B, C, 13 

LVV-SP-1.7 kb::Venus; colocalization rate 87.4 ± 4.9 % n = 3 mice, Fig. 6D, E). Similarly, 14 

we designed two LVVs containing conserved promoter regions upstream of the PENK 15 

gene and injected them into the mouse striatum. We found that the longer promoter (LVV-16 

PENK-2.2 kb::Venus) showed low specificity (colocalization rate 61.0 ± 5.8 %, n = 3 17 

mice; Fig.7D, E), whereas the shorter promoter (LVV-PENK-0.9 kb::Venus) induced 18 

more specific GFP expression in PENK-immunoreactive neurons (colocalization rate 19 

88.0 ± 1.7 %, n = 3 mice; Fig. 7B, C). 20 

Next, we examined whether these promoters induce strong transgene expression so that 21 

fluorescence of transgene Venus is detectable without immunohistochemical 22 
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enhancement. We found that strong Venus fluorescence was induced by LVV-SP-1 

0.8kb::Venus or LVV-PENK-0.9kb::Venus (Supplementary Fig. S1F, G). 2 

 3 

In silico prediction and comparison of transcription factor binding to identified 4 

promoters 5 

Sequence-specific transcription factors (TFs) play an important role in regulating the 6 

expression of target genes by binding to transcriptional regulatory regions, such as 7 

promoters and enhancers60. Thus, we hypothesized that different levels of promoter 8 

specificity could be due to different degrees of TF binding to the promoters. To address 9 

this issue, we utilized ConSite, an in silico prediction method for TF binding to promoter 10 

sequences47. We analyzed the longer promoters for each target gene by ConSite and 11 

identified TF binding sites in these promoters. Then, we counted the occurrence of each 12 

TF in the whole sequences of the longer promoters, in the sequences specific to the longer 13 

promoters, and in the sequences common to both the longer and shorter promoters 14 

(Supplementary Table 3). We found a number of TFs bound only to the sequences specific 15 

to the longer promoters or to the sequences common to both the longer and shorter 16 

promoters. We specifically focused on the differences between long and short versions of 17 

CCK and SERT promoters. In case of CCK, the shorter version was much more specific 18 

than the longer one (Fig. 2). This suggested that TFs, which bind to the sequence common 19 

to both the longer and shorter promoters, may contribute to the specificity. We found that 20 

Broad-complex 1, HNF-1, MEF2, and Suppressor of Hairless (SU(h)) were predicted to 21 

bind to the sequences common to both the longer and shorter CCK promoters but not to 22 
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the sequences specific to the longer promoters (Supplementary Table 3). Interestingly, 1 

according to the in situ hybridization data available from the Allen Mouse Brain Atlas61, 2 

the Mef2c expression pattern in the cerebral cortex is very similar to the expression 3 

pattern of CCK but not to those of PV and SST (Supplementary Fig. S2), highlighting the 4 

possible involvement of this TF. 5 

 6 

Discussion 7 

Promoters which are able to specifically express transgenes in sub-populations of central 8 

neurons are highly valuable tools but still are in short supply. Here we searched for 9 

promoters which contain evolutionally conserved sequences suitable for targeting an 10 

array of important neuronal phenotypes, which are common between monkey and mouse. 11 

Our assumption is that the most important regulatory elements such as binding sites of 12 

critical transcriptional factors should be retained in both species. We successfully 13 

identified several macaque promoters which specifically drove gene expression in the 14 

homologous populations of neurons in the mouse brain. However, we cannot rule out the 15 

possibility that sequences other than conserved regions in the promoter may play a key 16 

role in the specificity of the promoter. Thus, further investigation using mutated 17 

conserved sequences or randomly selected sequences from the respective promoters is 18 

needed to clearly show the importance of conserved sequences. Moreover, by using in 19 

silico TF binding prediction, we found TFs which are likely to be important for the 20 

specificity of the identified promoters. Although our initial screening for obvious reason 21 

had to be performed in the mouse, there are good reasons to expect that their selectivity 22 
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will be preserved in other species such as macaque. 1 

Recent advances in genetic tools including optogenetic, chemogenetic, and imaging 2 

constructs have revolutionized the ability to manipulate and record neuronal activity as 3 

well as analysis of synapse-level connectivity underlying brain function6-15, 62, 63. However, 4 

practical application of these tools often requires sufficiently high and specific expression 5 

of these tools in defined populations of neurons. In this study, we showed that upstream 6 

regions of SST, CCK, PV, SERT, vAChT, SP, and PENK genes in crab-eating macaque 7 

are capable of directing specific expression in the relevant populations of murine neurons. 8 

Although the identified promoters except for SERT and vAChT were sufficiently strong 9 

for inducing detectable level of transgene Venus fluorescence, whether expression of 10 

various transgenes driven by newly identified promoters will be sufficiently high for 11 

manipulation and recording of neuronal activity in vivo remains to be seen. However, the 12 

utilization of Cre in combination with a Cre-dependent expression cassette12, 13, 64 can 13 

dramatically enhance the expression level with preserving high cell-type specificity. 14 

Therefore, it should be possible to combine cell-specific expression of Cre with Cre-15 

dependent viral vectors to achieve the level of expression required for cell-type specific 16 

manipulation and recording of neuronal activity even in the monkey. Indeed, Stauffer et 17 

al.32 have successfully transduced and manipulated monkey dopamine neurons using this 18 

approach. In this study, we injected each LVV to the brain area where target neurons 19 

predominantly exist. Therefore, we cannot fully rule out the possibility that this 20 

population bias might lead to overestimation of the specificity of promoters. 21 

Systematic analysis of promoter sequences also contributes to development of the 22 
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transgenic animals, which are widely used to gain insights into molecular mechanisms 1 

and potential therapies for a variety of diseases65. Transgenic macaques were first 2 

reported in 200166, and later in 200867 and 201668. In contrast to the methods usually used 3 

in mice, these reports used retroviral or lentiviral vectors for transgene expression. 4 

Therefore, it is possible that the LVVs with the identified promoters may be also effective 5 

in establishing cell-type specific transgenic macaque. It is worth noting that also the 6 

transgenic common marmoset, another non-human primate, with germline transmission 7 

has been established by LVVs69. Considering that marmosets reach sexual maturity at 12-8 

18 months, use of macaque promoters identified in this study or those of marmoset in 9 

generation of transgenic animals will provide new insights into a variety of mental and 10 

neurodegenerative diseases in primate models which are the best available approximation 11 

of human pathology. 12 

While in this study we used LVV for speedy gene expression, adeno-associated virus 13 

(AAV) is currently the most popular vector used in rodent studies70-72. Similar to LVV, 14 

AAV provides stable and long-term gene expression in the targeted cells73. However, 15 

standard AAV cannot package more than 5 kb, while LVV can accommodate up to 9 kb73, 16 

74. From this perspective, all of the identified promoters in this study were shorter than 2 17 

kb which could be incorporated into AAV while leaving sufficient space for the transgenes. 18 

However, considering the episomal and concatemeric nature of AAV genomes75, which 19 

might affect the specificity and/or expression level, their performance in the AAV 20 

backbones requires further investigation. 21 

In conclusion, we have successfully identified promoter sequences in the macaque 22 



 

 19 

Nagai et al. Neuron-type specific promoters in monkey 

genome which may act as cell specific promoters in an array of neuronal sub-types and 1 

tested them in the mouse. We believe that these promoters will be useful for further 2 

application of genetic tools in non-human primates in a cell-type specific manner. 3 

 4 

 5 

  6 
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Figure legends 1 

Figure 1. Functional validation of macaque SST promoters in mouse. 2 

A (top) Sequence similarity of upstream regions between mouse and macaque. (bottom) 3 

Schematic representation of isolated promoters. B One week after injection of LVV-SST-4 

0.3 kb::Venus, transgene expression was analyzed immunohistochemically. Scale bars = 5 

200 μm (low magnification), 20 μm (high magnification). C Colocalization rate of SST 6 

and Venus. n = 4 mice. 7 

 8 

Figure 2. Functional validation of macaque CCK promoters in mouse. 9 

A (top) Sequence similarity of upstream regions between mouse and macaque. (bottom) 10 

Schematic representation of isolated promoters. B, D One week after injection of LVV-11 

CCK-0.5 kb::Venus (B) or LVV-CCK-3.9 kb::Venus (D), transgene expression was 12 

analyzed immunohistochemically. Scale bars = 200 μm (low magnification), 20 μm (high 13 

magnification). C, E Colocalization rate of CCK and Venus after infection with LVV-14 

CCK-0.5 kb::Venus (C) or LVV-CCK-3.9 kb::Venus (E). n = 3 mice. 15 

 16 

Figure 3. Functional validation of macaque PV promoters in mouse. 17 

A (top) Sequence similarity of upstream regions between mouse and macaque. (bottom) 18 

Schematic representation of isolated promoters. B, D One week after injection of LVV-19 

PV-0.8 kb::Venus (B) or LVV-PV-1.8 kb::Venus (D), transgene expression was analyzed 20 

immunohistochemically. Scale bars = 200 μm (low magnification), 20 μm (high 21 

magnification). C, E Colocalization rate of PV and Venus after infection with LVV-PV-22 
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0.8 kb::Venus (C) or LVV-PV-1.8 kb::Venus (E). n = 3 mice. 1 

 2 

Figure 4. Functional validation of macaque SERT promoters in mouse. 3 

A (top) Sequence similarity of upstream regions between mouse and macaque. (bottom) 4 

Schematic representation of isolated promoters. B, D One week after injection of LVV-5 

SERT-0.5 kb::Venus (B) or LVV-SERT-1.9 kb::Venus (D), transgene expression was 6 

analyzed immunohistochemically. Scale bars = 200 μm (low magnification), 20 μm (high 7 

magnification). C, E Colocalization rate of TPH2, a marker for serotonin neurons, and 8 

Venus after infection with LVV-SERT-0.5 kb::Venus (C) or LVV-SERT-1.9 kb::Venus (E). 9 

n = 3 mice. 10 

 11 

Figure 5. Functional validation of macaque vAChT promoters in mouse. 12 

A (top) Sequence similarity of upstream regions between mouse and macaque. (bottom) 13 

Schematic representation of isolated promoters. B, D One week after injection of LVV-14 

vAChT-1.1 kb::Venus (B) or LVV-vAChT-1.8 kb::Venus (D), transgene expression was 15 

analyzed immunohistochemically. Scale bars = 200 μm (low magnification), 20 μm (high 16 

magnification). C, E Colocalization rate of ChAT, a marker for acetylcholine neurons, 17 

and Venus after infection with LVV-vAChT-1.1 kb::Venus (C) or LVV-vAChT-1.8 18 

kb::Venus (E). n = 3 mice. 19 

 20 

Figure 6. Functional validation of macaque SP promoters in mouse. 21 

A (top) Sequence similarity of upstream regions between mouse and macaque. (bottom) 22 
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Schematic representation of isolated promoters. B, D One week after injection of LVV-1 

SP-0.8 kb::Venus (B) or LVV-SP-1.7 kb::Venus (D), transgene expression was analyzed 2 

immunohistochemically. Scale bars = 200 μm (low magnification), 20 μm (high 3 

magnification). C, E Colocalization rate of SP and Venus after infection with LVV-SP-4 

0.8 kb::Venus (C) or LVV-SP-1.7kb::Venus (E). n = 3 mice. 5 

 6 

Figure 7. Functional validation of macaque PENK promoters in mouse. 7 

A (top) Sequence similarity of upstream regions between mouse and macaque. (bottom) 8 

Schematic representation of isolated promoters. B, D One week after injection of LVV-9 

PENK-0.9 kb::Venus (B) or LVV-PENK-2.2 kb::Venus (D), transgene expression was 10 

analyzed immunohistochemically. Scale bars = 200 μm (low magnification), 20 μm (high 11 

magnification). C, E Colocalization rate of PENK and Venus after infection with LVV-12 

PENK-0.9 kb::Venus (C) or LVV-PENK-2.2kb::Venus (E). n = 3 mice. 13 
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