26 research outputs found

    Exercise-Induced Post-Ischemic Left Ventricular Delayed Relaxation or Diastolic Stunning Is it a Reliable Marker in Detecting Coronary Artery Disease?

    Get PDF
    ObjectivesThe aim of this study was to determine whether post-ischemic left ventricular (LV) delayed relaxation could be detected by using strain imaging (SI) derived from 2-dimensional speckle-tracking echocardiography in patients with stable effort angina.BackgroundRegional LV delayed relaxation during early diastole is a sensitive sign of acute myocardial ischemia and may persist beyond recovery of exercise-induced ischemia.MethodsRegional LV transverse strain changes during the first one-third of diastole duration (strain imaging diastolic index [SI-DI]) were determined at baseline and 5 and 10 min after the exercise test in 162 patients with stable effort angina. The ratio of SI-DI before and after exercise (SI-DI ratio) was used to identify regional LV delayed relaxation.ResultsA total of 117 patients had significant (β‰₯50% of luminal diameter) coronary stenoses. The mean SI-DI decreased from 78.0 Β± 9.7% to 27.6 Β± 16.0% (p < 0.0001) in 191 territories perfused by coronary arteries with significant stenoses 5 min after the treadmill exercise, whereas it remained unchanged in 280 territories perfused by arteries with nonsignificant stenoses. Ten minutes after exercise, regional delayed relaxation was still observed in 85% of territories perfused by stenotic coronary arteries. An SI-DI ratio with a cutoff value of 0.74 had a sensitivity of 97% and a specificity of 93% to detect significant coronary stenosis in the receiver-operator characteristic curve.ConclusionsDetection of post-ischemic regional LV delayed relaxation or diastolic stunning after treadmill exercise using SI is a sensitive and reliable method for the detection of coronary artery disease

    Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle

    Get PDF
    The concept of the plasticity or transdifferentiation of adult stem cells has been challenged by the phenomenon of cell fusion. In this work, we examined whether neonatal cardiomyocytes fuse with various somatic cells including endothelial cells, cardiac fibroblasts, bone marrow cells, and endothelial progenitor cells spontaneously in vitro. When cardiomyocytes were cocultured with endothelial cells or cardiac fibroblasts, they fused and showed phenotypes of cardiomyocytes. Furthermore, cardiomyocytes reentered the G2-M phase in the cell cycle after fusing with proliferative noncardiomyocytes. Transplanted endothelial cells or skeletal muscle–derived cells fused with adult cardiomyocytes in vivo. In the cryoinjured heart, there were Ki67-positive cells that expressed both cardiac and endothelial lineage marker proteins. These results suggest that cardiomyocytes fuse with other cells and enter the cell cycle by maintaining their phenotypes

    Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo

    Get PDF
    Side population (SP) cells, which can be identified by their ability to exclude Hoechst 33342 dye, are one of the candidates for somatic stem cells. Although bone marrow SP cells are known to be long-term repopulating hematopoietic stem cells, there is little information about the characteristics of cardiac SP cells (CSPs). When cultured CSPs from neonatal rat hearts were treated with oxytocin or trichostatin A, some CSPs expressed cardiac-specific genes and proteins and showed spontaneous beating. When green fluorescent protein–positive CSPs were intravenously infused into adult rats, many more (∼12-fold) CSPs were migrated and homed in injured heart than in normal heart. CSPs in injured heart differentiated into cardiomyocytes, endothelial cells, or smooth muscle cells (4.4%, 6.7%, and 29% of total CSP-derived cells, respectively). These results suggest that CSPs are intrinsic cardiac stem cells and involved in the regeneration of diseased hearts

    A Crucial Role of Activin A-Mediated Growth Hormone Suppression in Mouse and Human Heart Failure

    Get PDF
    Infusion of bone marrow-derived mononuclear cells (BMMNC) has been reported to ameliorate cardiac dysfunction after acute myocardial infarction. In this study, we investigated whether infusion of BMMNC is also effective for non-ischemic heart failure model mice and the underlying mechanisms. Intravenous infusion of BMMNC showed transient cardioprotective effects on animal models with dilated cardiomyopathy (DCM) without their engraftment in heart, suggesting that BMMNC infusion improves cardiac function via humoral factors rather than their differentiation into cardiomyocytes. Using conditioned media from sorted BMMNC, we found that the cardioprotective effects were mediated by growth hormone (GH) secreted from myeloid (Gr-1(+)) cells and the effects was partially mediated by signal transducer and activator of transcription 3 in cardiomyocytes. On the other hand, the GH expression in Gr-1(+) cells was significantly downregulated in DCM mice compared with that in healthy control, suggesting that the environmental cue in heart failure might suppress the Gr-1(+) cells function. Activin A was upregulated in the serum of DCM models and induced downregulation of GH levels in Gr-1(+) cells and serum. Furthermore, humoral factors upregulated in heart failure including angiotensin II upregulated activin A in peripheral blood mononuclear cells (PBMNC) via activation of NFΞΊB. Similarly, serum activin A levels were also significantly higher in DCM patients with heart failure than in healthy subjects and the GH levels in conditioned medium from PBMNC of DCM patients were lower than that in healthy subjects. Inhibition of activin A increased serum GH levels and improved cardiac function of DCM model mice. These results suggest that activin A causes heart failure by suppressing GH activity and that inhibition of activin A might become a novel strategy for the treatment of heart failure

    Fertilizability of oocytes derived from Holstein cows having different antral follicle counts in ovaries

    Get PDF
    In this study, to clarify the relationship between ovarian reserve and oocyte quality, cumulus-oocyte complexes (COCs) were collected repeatedly by ovum pick-up (OPU) from cows with high and low antral follicle counts (AFCs) at short (3–4 days) and long (7 days) intervals, and COC morphologies and oocyte fertilizability were examined. The relationship between AFC and follicular growth after OPU was also investigated. Cows showing AFC of β‰₯30 in at least one OPU session were grouped into the high-AFC group. At a short interval, follicular sizes and COC morphologies were similar between the different AFC groups. However, the normal fertilization rate was higher in the high-AFC group than in the low one, although total penetration rates were similar. At a long interval, the percentage of COCs with poor morphology in the high-AFC group was higher and the normal fertilization rate was lower than in the low one. In the low-AFC group, normal fertilization rates at short and long intervals were similar, and mean follicular size became larger at a long than at a short interval. However, mean follicular sizes at short- and long-interval OPU were similar in the high-AFC group. In conclusion, it is suggested that oocytes derived from cows with high AFC had higher fertilizability than those from cows with low AFC when OPUs were performed at a short (3–4 days) interval. However, oocyte quality in high-AFC cows was impaired by long-interval (7 days) OPU, possibly due to the degradation of follicles

    Mitochondrial activity during pre-maturational culture in in vitro-grown bovine oocytes is related to maturational and developmental competences.

    Get PDF
    The objective of this study was to investigate the dynamics of mitochondrial activity in in vitro-grown (IVG) bovine oocytes during pre-maturational culture (pre-IVM) and its relationship to their developmental competence upon being subjected to different pre-IVM durations. After 12-day IVG culture, oocytes were cultured for 0, 10 or 20 h with 3-isobutyl-1-methylxanthine (IBMX) as pre-IVM. Mitochondrial activity in IVG oocytes after 10 h pre-IVM was the highest among all the pre-IVM durations (P < 0.05). In addition, cleavage (79.4%) and blastocyst rates (38.9%) of embryos derived from IVG oocytes with 10 h pre-IVM were higher than those with 20 h pre-IVM (63.0 and 25.8%, respectively; P < 0.05) and similar to those of in vivo-grown oocytes (82.7 and 36.7%, respectively). To confirm the developmental ability of IVG oocytes with 10 h pre-IVM beyond the blastocyst stage in vivo, embryo transfer was attempted. Transferred embryos developed to the elongated embryonic stage (63.6%, 7/11) in the recipient uterus atDay 16 of oestrus, and a male calf was delivered (50%, 1/2). In conclusion, it was indicated that the mitochondrial activity of bovine IVG oocytes peaked at 10 h pre-IVM and was closely correlated with the nuclear maturation and developmental competences of IVG oocytes

    Computer based monitoring and remote control of methane drainage systems

    Get PDF
    Final reportAvailable from British Library Document Supply Centre- DSC:3828.4F(EUR--10944-EN)(microfiche) / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo
    corecore